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Problem definition
What do we mean when we say that an ad hoc file 
format has multiple dialects?
We want to find these dialects in a way that is both 
accurate and easily explainable
● Accurate models fit the data
● Explainable models are parsimonious
● They contain the minimum number of dialects 

necessary to characterize the observed behavior.
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Measuring software behavior
● Our methodology does not look “into” the contents of 

a file… parsers already exist that can do that!
● Parsers produce measurable output when they 

consume a file, a message
– It’s usually more than simply “parsed OK” or “error”
– We don’t need to consider, say, rendered output
– Categorical data suffices; “C enum type”

● File behavior consists of a set of triples:
– Parser ID
– File ID
– Message
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File behaviors ascendant
● The methodology in this talk has been successfully applied to 

– CSV files
– NITF files
– PDF files
– MPEG files
– JPEG files
– English text files

● We are currently working to apply it further to
– Ontology tagged error matrices (generally)
– Byte histograms from file contents and traces

● Takeaway: This is a general tool with substantial practical power!

This talk
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What is a message?
● For CSV: 

– Which encoding? ASCII, UTF-8, etc.
– Which delimiters (if any)?  Comma, space, etc.
– Which kind of quotes (if any)? 
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What is a message?
● For CSV: character regexes and simple lexers
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What is a message?
● For CSV: character regexes and simple lexers
● For PDF or NITF, more complicated regexes

. . .

. . .
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CSV example data
● Data: CSV files culled from the wild

https://github.com/alan-turing-institute/CSV_Wrangling
● Messages obtained from CleverCSV:

https://github.com/alan-turing-institute/CleverCSV
– 14 Delimiters
– 3 Quote Characters
– 3 Escape Characters
– 13 distinct text encodings

https://github.com/alan-turing-institute/CSV_Wrangling
https://github.com/alan-turing-institute/CleverCSV
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Joint behaviors: message patterns
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Message patterns are explainable
● Most CSV files are as you might expect: 

comma separated values

● However many are not...

wat? This must be Excel's fault…

… so perhaps there are several dialects 
of CSV files present
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Message pattern probability (Take 1)
What's the probability that a file from dialect A exhibits 
a set of messages K?
This is easy if we assume* messages are independent 
when conditioned on dialect:

background less frequent messages
dialect A more frequent messages

Message didn't happen
Message did happen

*Hold that thought!  
Challenging one’s assumptions is important!
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Message patterns are ordered by subset
● Theorem: Under our theoretical model, patterns with 

more messages are less frequent
● Monotonicity means that subset ordering is exactly 

opposite file count ordering

              {, ASCII} ⊆ {, “ ASCII}
Counts:       1417         >    682

“Message counts vary occur because 
files vary randomly”
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Message patterns are ordered by subset
● Theorem: Under our theoretical model, patterns with 

more messages are less frequent
● Monotonicity means that subset ordering is exactly 

opposite file count ordering

              {, ASCII} ⊆ {, “ ASCII}
Counts:       1417         >    682
● Monotonicity doesn’t always 

happen… for good* reason!
              {, UTF-8} ⊆ {, “ UTF-8}
Counts:        119         <    196
*Files are not random, they have structure
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CSV message pattern partial order
● Vertices = distinct message patterns
● Vertices sized by file count
● Edges directed according to message pattern order
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CSV message pattern partial order
● Vertices = distinct message patterns
● Vertices sized by file count
● Edges directed according to message pattern order

ASCII files
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ASCII dialect of CSV
● Vertices = distinct message patterns
● Vertices sized by file count
● Edges directed according to message pattern order
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ASCII dialect of CSV
● Dialects appear to correspond to places where the 

file count is not monotonic
– Violations to monotonicity are marked
– Each message pattern in question defines a dialect
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ASCII dialect of CSV
● Message patterns “containing” a monotonicity 

violation could be part of that dialect
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Required messages
● Message patterns “containing” a monotonicity 

violation could be part of that dialect
● The minimal set of messages in each dialect 

characterize it, and are required for that dialect

Dialect consists of some files producing at least , ASCII 
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Message pattern ambiguity
● Caution: message patterns do not guarantee that a 

file is of a given dialect
– Non-tabular text can produce , ASCII without 

being a CSV file

Dialect consists of some files producing at least , ASCII 
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Message pattern probability (Take 2)
A corpus with many dialects using an independent 
mixture model

The same message pattern can appear in multiple 
dialects, though with probability < 1 in each case

message pattern probability in dialect A

Frequency of dialect A in dataset

each dialect is a term in this sum



 Michael Robinson

Message pattern probability (Take 2)
A corpus with many dialects using an independent 
mixture model

Insight: Messages in each dialect are independent once a 
set of dialect required messages occur first

message pattern probability in dialect A

Frequency of dialect A in dataset

Required messages 
must occur!

Non-required messages are independent



 Michael Robinson

Many dialect decompositions may be consistent with the 
observed data : accuracy is required
Some decompositions have many dialects...

Ambiguity is present and useful
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Many dialect decompositions may be consistent with the 
observed data : accuracy is required
… while others have fewer

Ambiguity is present and useful

The one shown here is the coarsest one that is 
consistent with the data – the most explainable
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Coarsest dialect decomposition exists
Many dialect decompositions may be consistent with the 
observed data

Theorem: There is a unique, coarsest decomposition into 
candidate dialects; this can be found algorithmically
Theorem: The actual dialects are bounded below by (and 
are strictly finer than) the candidate dialects

Candidate required message sets, found greedily

Candidate message pattern probabilities
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CSV candidate dialects
The coarsest decomposition yields dialects that are 
exactly what one would expect… explanation is easy

English text 
delimited w/ 
commas

The rest are
English text 
delimited w/ 
other chars
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Encore: NITF candidate dialects

Valid files
Valid but unreadable

Invalid

Candidate 
dialects 
capture 
human-
interpretable 
file behaviors
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Encore2: PDF candidate dialects
Again, candidate dialects identify human-interpretable 
behaviors
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Conclusions
● File behavior can be characterized by collecting 

parser responses through their output messages
● Files of a dialect exhibit similar behaviors that can 

be identified by probabilistic clustering
● What a dialect means is ambiguous, but the 

mathematics supports this ambiguity
– There are many accurate dialect decompositions
– There is a well-defined, unique coarsest decomposition
– The coarsest dialect decomposition is easily 

explainable
● This methodology can be easily retooled to handle 

many different file formats
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To learn more...

Michael Robinson
michaelr@american.edu

http://drmichaelrobinson.net
Relevant references:

doi:10.1109/SPW53761.2021.00032
doi:10.1109/SPW54247.2022.9833862

arXiv:2105.01690
Software:

 https://github.com/kb1dds
https://www.youtube.com/watch?v=i3wl2jdIZv8
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http://drmichaelrobinson.net/
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https://arxiv.org/abs/2105.01690
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