
Mutations

dippy gram: Grammar-Aware, Coverage-Guided
Differential Fuzzing (WIP)

Ben Kallus, Sean W. Smith, James Utley

Dartmouth College

May 25, 2023

Ben Kallus, Sean W. Smith, James Utley Dartmouth

Overview

Single-target fuzzing is good at finding bugs that cause
crashes and memory errors.

It’s not so good at finding bugs that don’t.

Differential fuzzing is the search for inputs that cause
implementations of the same specification to diverge.

dippy gram is a differential fuzzer that uses coverage
information, grammar-based mutations, and a novel bug
minimization scheme to detect crashing and non-crashing
bugs.

We apply dippy gram to a suite of URL parsers, and have
discovered numerous parser differentials, both crashing and
non-crashing.

Ben Kallus, Sean W. Smith, James Utley Dartmouth

Overview

Single-target fuzzing is good at finding bugs that cause
crashes and memory errors.

It’s not so good at finding bugs that don’t.

Differential fuzzing is the search for inputs that cause
implementations of the same specification to diverge.

dippy gram is a differential fuzzer that uses coverage
information, grammar-based mutations, and a novel bug
minimization scheme to detect crashing and non-crashing
bugs.

We apply dippy gram to a suite of URL parsers, and have
discovered numerous parser differentials, both crashing and
non-crashing.

Ben Kallus, Sean W. Smith, James Utley Dartmouth

Overview

Single-target fuzzing is good at finding bugs that cause
crashes and memory errors.

It’s not so good at finding bugs that don’t.

Differential fuzzing is the search for inputs that cause
implementations of the same specification to diverge.

dippy gram is a differential fuzzer that uses coverage
information, grammar-based mutations, and a novel bug
minimization scheme to detect crashing and non-crashing
bugs.

We apply dippy gram to a suite of URL parsers, and have
discovered numerous parser differentials, both crashing and
non-crashing.

Ben Kallus, Sean W. Smith, James Utley Dartmouth

Overview

Single-target fuzzing is good at finding bugs that cause
crashes and memory errors.

It’s not so good at finding bugs that don’t.

Differential fuzzing is the search for inputs that cause
implementations of the same specification to diverge.

dippy gram is a differential fuzzer that uses coverage
information, grammar-based mutations, and a novel bug
minimization scheme to detect crashing and non-crashing
bugs.

We apply dippy gram to a suite of URL parsers, and have
discovered numerous parser differentials, both crashing and
non-crashing.

Ben Kallus, Sean W. Smith, James Utley Dartmouth

Overview

Single-target fuzzing is good at finding bugs that cause
crashes and memory errors.

It’s not so good at finding bugs that don’t.

Differential fuzzing is the search for inputs that cause
implementations of the same specification to diverge.

dippy gram is a differential fuzzer that uses coverage
information, grammar-based mutations, and a novel bug
minimization scheme to detect crashing and non-crashing
bugs.

We apply dippy gram to a suite of URL parsers, and have
discovered numerous parser differentials, both crashing and
non-crashing.

Ben Kallus, Sean W. Smith, James Utley Dartmouth

Results

So far, we’ve applied dippy gram only to URL parsers. Work is
ongiong to apply it to other domains. A summary of some bugs
that we’ve found using dippy gram:

urllib3 (∼350m downloads/month, the most popular package
on PyPI)

Reported 4 bugs. We patched 2, and 2 were patched by
others. One of those was awarded a $300 bounty.

rfc3986 (∼13m downloads/month)

Reported and patched 3 bugs.

CPython standard library

Reported and patched 3 bugs. Another patch is underway.
Currently writing a proposal to deprecate CPython’s URL
shotgun parser and replace it with something more principled.

We have also found bugs in yarl, furl, hyperlink, and others,
but our PRs have not yet been merged.

Ben Kallus, Sean W. Smith, James Utley Dartmouth

Results

So far, we’ve applied dippy gram only to URL parsers. Work is
ongiong to apply it to other domains. A summary of some bugs
that we’ve found using dippy gram:

urllib3 (∼350m downloads/month, the most popular package
on PyPI)

Reported 4 bugs. We patched 2, and 2 were patched by
others. One of those was awarded a $300 bounty.

rfc3986 (∼13m downloads/month)

Reported and patched 3 bugs.

CPython standard library

Reported and patched 3 bugs. Another patch is underway.
Currently writing a proposal to deprecate CPython’s URL
shotgun parser and replace it with something more principled.

We have also found bugs in yarl, furl, hyperlink, and others,
but our PRs have not yet been merged.

Ben Kallus, Sean W. Smith, James Utley Dartmouth

Results

So far, we’ve applied dippy gram only to URL parsers. Work is
ongiong to apply it to other domains. A summary of some bugs
that we’ve found using dippy gram:

urllib3 (∼350m downloads/month, the most popular package
on PyPI)

Reported 4 bugs. We patched 2, and 2 were patched by
others. One of those was awarded a $300 bounty.

rfc3986 (∼13m downloads/month)

Reported and patched 3 bugs.

CPython standard library

Reported and patched 3 bugs. Another patch is underway.
Currently writing a proposal to deprecate CPython’s URL
shotgun parser and replace it with something more principled.

We have also found bugs in yarl, furl, hyperlink, and others,
but our PRs have not yet been merged.

Ben Kallus, Sean W. Smith, James Utley Dartmouth

Results

So far, we’ve applied dippy gram only to URL parsers. Work is
ongiong to apply it to other domains. A summary of some bugs
that we’ve found using dippy gram:

urllib3 (∼350m downloads/month, the most popular package
on PyPI)

Reported 4 bugs. We patched 2, and 2 were patched by
others. One of those was awarded a $300 bounty.

rfc3986 (∼13m downloads/month)

Reported and patched 3 bugs.

CPython standard library

Reported and patched 3 bugs. Another patch is underway.
Currently writing a proposal to deprecate CPython’s URL
shotgun parser and replace it with something more principled.

We have also found bugs in yarl, furl, hyperlink, and others,
but our PRs have not yet been merged.

Ben Kallus, Sean W. Smith, James Utley Dartmouth

Results

So far, we’ve applied dippy gram only to URL parsers. Work is
ongiong to apply it to other domains. A summary of some bugs
that we’ve found using dippy gram:

urllib3 (∼350m downloads/month, the most popular package
on PyPI)

Reported 4 bugs. We patched 2, and 2 were patched by
others. One of those was awarded a $300 bounty.

rfc3986 (∼13m downloads/month)

Reported and patched 3 bugs.

CPython standard library

Reported and patched 3 bugs. Another patch is underway.
Currently writing a proposal to deprecate CPython’s URL
shotgun parser and replace it with something more principled.

We have also found bugs in yarl, furl, hyperlink, and others,
but our PRs have not yet been merged.

Ben Kallus, Sean W. Smith, James Utley Dartmouth

Relationship to Prior Work

Our fuzzer draws heavily from NEZHA (Petsios et. al, 2017). We
distinguish our work by

Using grammar-based mutations.

Examining not just exit statuses, but also program stdout.

Minimizing results to avoid duplicate bug reporting.

Uses AFL instrumentation, and is thus compatible with many
interpreted languages through python-afl, Kelinci, and
ruby-afl.

Pretty simple; ∼500 loc (10x fewer than NEZHA)

Ben Kallus, Sean W. Smith, James Utley Dartmouth

Relationship to Prior Work

Our fuzzer draws heavily from NEZHA (Petsios et. al, 2017). We
distinguish our work by

Using grammar-based mutations.

Examining not just exit statuses, but also program stdout.

Minimizing results to avoid duplicate bug reporting.

Uses AFL instrumentation, and is thus compatible with many
interpreted languages through python-afl, Kelinci, and
ruby-afl.

Pretty simple; ∼500 loc (10x fewer than NEZHA)

Ben Kallus, Sean W. Smith, James Utley Dartmouth

Relationship to Prior Work

Our fuzzer draws heavily from NEZHA (Petsios et. al, 2017). We
distinguish our work by

Using grammar-based mutations.

Examining not just exit statuses, but also program stdout.

Minimizing results to avoid duplicate bug reporting.

Uses AFL instrumentation, and is thus compatible with many
interpreted languages through python-afl, Kelinci, and
ruby-afl.

Pretty simple; ∼500 loc (10x fewer than NEZHA)

Ben Kallus, Sean W. Smith, James Utley Dartmouth

Relationship to Prior Work

Our fuzzer draws heavily from NEZHA (Petsios et. al, 2017). We
distinguish our work by

Using grammar-based mutations.

Examining not just exit statuses, but also program stdout.

Minimizing results to avoid duplicate bug reporting.

Uses AFL instrumentation, and is thus compatible with many
interpreted languages through python-afl, Kelinci, and
ruby-afl.

Pretty simple; ∼500 loc (10x fewer than NEZHA)

Ben Kallus, Sean W. Smith, James Utley Dartmouth

Relationship to Prior Work

Our fuzzer draws heavily from NEZHA (Petsios et. al, 2017). We
distinguish our work by

Using grammar-based mutations.

Examining not just exit statuses, but also program stdout.

Minimizing results to avoid duplicate bug reporting.

Uses AFL instrumentation, and is thus compatible with many
interpreted languages through python-afl, Kelinci, and
ruby-afl.

Pretty simple; ∼500 loc (10x fewer than NEZHA)

Ben Kallus, Sean W. Smith, James Utley Dartmouth

Relationship to Prior Work

Our fuzzer draws heavily from NEZHA (Petsios et. al, 2017). We
distinguish our work by

Using grammar-based mutations.

Examining not just exit statuses, but also program stdout.

Minimizing results to avoid duplicate bug reporting.

Uses AFL instrumentation, and is thus compatible with many
interpreted languages through python-afl, Kelinci, and
ruby-afl.

Pretty simple; ∼500 loc (10x fewer than NEZHA)

Ben Kallus, Sean W. Smith, James Utley Dartmouth

The Fuzzing Loop

1 Dequeue an input I from the input queue (initially a seed
corpus).

2 Run I through a group of instrumented programs.

3 Deduplicate each program’s control flow trace into a sequence
of sets of CFG edges.

4 If a meaningful differential is observed, report and GOTO 1.

5 If this sequence has not been encountered previously, mutate I
a few times and place the mutants onto the queue.

6 GOTO 1.

Ben Kallus, Sean W. Smith, James Utley Dartmouth

The Fuzzing Loop

1 Dequeue an input I from the input queue (initially a seed
corpus).

2 Run I through a group of instrumented programs.

3 Deduplicate each program’s control flow trace into a sequence
of sets of CFG edges.

4 If a meaningful differential is observed, report and GOTO 1.

5 If this sequence has not been encountered previously, mutate I
a few times and place the mutants onto the queue.

6 GOTO 1.

Ben Kallus, Sean W. Smith, James Utley Dartmouth

The Fuzzing Loop

1 Dequeue an input I from the input queue (initially a seed
corpus).

2 Run I through a group of instrumented programs.

3 Deduplicate each program’s control flow trace into a sequence
of sets of CFG edges.

4 If a meaningful differential is observed, report and GOTO 1.

5 If this sequence has not been encountered previously, mutate I
a few times and place the mutants onto the queue.

6 GOTO 1.

Ben Kallus, Sean W. Smith, James Utley Dartmouth

The Fuzzing Loop

1 Dequeue an input I from the input queue (initially a seed
corpus).

2 Run I through a group of instrumented programs.

3 Deduplicate each program’s control flow trace into a sequence
of sets of CFG edges.

4 If a meaningful differential is observed, report and GOTO 1.

5 If this sequence has not been encountered previously, mutate I
a few times and place the mutants onto the queue.

6 GOTO 1.

Ben Kallus, Sean W. Smith, James Utley Dartmouth

The Fuzzing Loop

1 Dequeue an input I from the input queue (initially a seed
corpus).

2 Run I through a group of instrumented programs.

3 Deduplicate each program’s control flow trace into a sequence
of sets of CFG edges.

4 If a meaningful differential is observed, report and GOTO 1.

5 If this sequence has not been encountered previously, mutate I
a few times and place the mutants onto the queue.

6 GOTO 1.

Ben Kallus, Sean W. Smith, James Utley Dartmouth

The Fuzzing Loop

1 Dequeue an input I from the input queue (initially a seed
corpus).

2 Run I through a group of instrumented programs.

3 Deduplicate each program’s control flow trace into a sequence
of sets of CFG edges.

4 If a meaningful differential is observed, report and GOTO 1.

5 If this sequence has not been encountered previously, mutate I
a few times and place the mutants onto the queue.

6 GOTO 1.

Ben Kallus, Sean W. Smith, James Utley Dartmouth

What is a meaningful differential?

We want to avoid reporting results that are expected due to
support for optional parts of a specification.

For example, RFC 3986 permits a URL parser to ignore or
reject password fields from URLs, because their use is
deprecated.

We use configurable program output comparators to ensure
that the fuzzer does not report these uninteresting differences.

This allows us to choose an equivalence that suits our target
specification. For example, we can specify that a portion of
program output is to be considered case insensitively when
determining whether a meaningful difference has been
observed.

Ben Kallus, Sean W. Smith, James Utley Dartmouth

What is a meaningful differential?

We want to avoid reporting results that are expected due to
support for optional parts of a specification.

For example, RFC 3986 permits a URL parser to ignore or
reject password fields from URLs, because their use is
deprecated.

We use configurable program output comparators to ensure
that the fuzzer does not report these uninteresting differences.

This allows us to choose an equivalence that suits our target
specification. For example, we can specify that a portion of
program output is to be considered case insensitively when
determining whether a meaningful difference has been
observed.

Ben Kallus, Sean W. Smith, James Utley Dartmouth

What is a meaningful differential?

We want to avoid reporting results that are expected due to
support for optional parts of a specification.

For example, RFC 3986 permits a URL parser to ignore or
reject password fields from URLs, because their use is
deprecated.

We use configurable program output comparators to ensure
that the fuzzer does not report these uninteresting differences.

This allows us to choose an equivalence that suits our target
specification. For example, we can specify that a portion of
program output is to be considered case insensitively when
determining whether a meaningful difference has been
observed.

Ben Kallus, Sean W. Smith, James Utley Dartmouth

What is a meaningful differential?

We want to avoid reporting results that are expected due to
support for optional parts of a specification.

For example, RFC 3986 permits a URL parser to ignore or
reject password fields from URLs, because their use is
deprecated.

We use configurable program output comparators to ensure
that the fuzzer does not report these uninteresting differences.

This allows us to choose an equivalence that suits our target
specification. For example, we can specify that a portion of
program output is to be considered case insensitively when
determining whether a meaningful difference has been
observed.

Ben Kallus, Sean W. Smith, James Utley Dartmouth

What is a meaningful differential?

We also want to avoid reporting duplicate results.

We provide support for minimization modules that reduce
bug-inducing inputs to a minimal form in which the bug is still
reproduced. The trace sets from these minimal bug-inducing
inputs can then be used for classification.

For URL, one such module iteratively deletes byte sequences
(similar to afl-tmin) from a bug-inducing input until we arrive
at a minimal length input that reproduces the differential.

For parser differentials, this means maintaining parser exit
statuses and parse tree equivalence.

The minimized input’s trace is recorded, and future inputs
with the same trace after minimization are ignored.

Ben Kallus, Sean W. Smith, James Utley Dartmouth

What is a meaningful differential?

We also want to avoid reporting duplicate results.

We provide support for minimization modules that reduce
bug-inducing inputs to a minimal form in which the bug is still
reproduced. The trace sets from these minimal bug-inducing
inputs can then be used for classification.

For URL, one such module iteratively deletes byte sequences
(similar to afl-tmin) from a bug-inducing input until we arrive
at a minimal length input that reproduces the differential.

For parser differentials, this means maintaining parser exit
statuses and parse tree equivalence.

The minimized input’s trace is recorded, and future inputs
with the same trace after minimization are ignored.

Ben Kallus, Sean W. Smith, James Utley Dartmouth

What is a meaningful differential?

We also want to avoid reporting duplicate results.

We provide support for minimization modules that reduce
bug-inducing inputs to a minimal form in which the bug is still
reproduced. The trace sets from these minimal bug-inducing
inputs can then be used for classification.

For URL, one such module iteratively deletes byte sequences
(similar to afl-tmin) from a bug-inducing input until we arrive
at a minimal length input that reproduces the differential.

For parser differentials, this means maintaining parser exit
statuses and parse tree equivalence.

The minimized input’s trace is recorded, and future inputs
with the same trace after minimization are ignored.

Ben Kallus, Sean W. Smith, James Utley Dartmouth

What is a meaningful differential?

We also want to avoid reporting duplicate results.

We provide support for minimization modules that reduce
bug-inducing inputs to a minimal form in which the bug is still
reproduced. The trace sets from these minimal bug-inducing
inputs can then be used for classification.

For URL, one such module iteratively deletes byte sequences
(similar to afl-tmin) from a bug-inducing input until we arrive
at a minimal length input that reproduces the differential.

For parser differentials, this means maintaining parser exit
statuses and parse tree equivalence.

The minimized input’s trace is recorded, and future inputs
with the same trace after minimization are ignored.

Ben Kallus, Sean W. Smith, James Utley Dartmouth

What is a meaningful differential?

We also want to avoid reporting duplicate results.

We provide support for minimization modules that reduce
bug-inducing inputs to a minimal form in which the bug is still
reproduced. The trace sets from these minimal bug-inducing
inputs can then be used for classification.

For URL, one such module iteratively deletes byte sequences
(similar to afl-tmin) from a bug-inducing input until we arrive
at a minimal length input that reproduces the differential.

For parser differentials, this means maintaining parser exit
statuses and parse tree equivalence.

The minimized input’s trace is recorded, and future inputs
with the same trace after minimization are ignored.

Ben Kallus, Sean W. Smith, James Utley Dartmouth

Mutations

We employ two types of mutation operations:

Random mutations:

Random byte deletion
Random byte insertion
Random byte replacement

Grammar-based mutations: (requires a grammar)

Random parse subtree replacement
Random parse subtree duplication

Ben Kallus, Sean W. Smith, James Utley Dartmouth

Mutations

We employ two types of mutation operations:

Random mutations:

Random byte deletion
Random byte insertion
Random byte replacement

Grammar-based mutations: (requires a grammar)

Random parse subtree replacement
Random parse subtree duplication

Ben Kallus, Sean W. Smith, James Utley Dartmouth

Mutations

We employ two types of mutation operations:

Random mutations:

Random byte deletion
Random byte insertion
Random byte replacement

Grammar-based mutations: (requires a grammar)

Random parse subtree replacement
Random parse subtree duplication

Ben Kallus, Sean W. Smith, James Utley Dartmouth

Too-permissive scheme validation
.://example.com

Parser Scheme Host Path

CPython . example.com

rfc3986 .://example.com

urllib3 . //example.com

Ben Kallus, Sean W. Smith, James Utley Dartmouth

Bad IPv6 hostname validation
http://[::1]example.com

Parser Host

CPython ::1

everything else rejects

Ben Kallus, Sean W. Smith, James Utley Dartmouth

Bad IPv6 hostname validation
http://[::1]example.com

Parser Host

CPython ::1

everything else rejects

Ben Kallus, Sean W. Smith, James Utley Dartmouth

Bad scheme validation
evil.com://good.com

Parser Scheme Host Path

CPython evil.com good.com

urllib3 evil.com //good.com

Ben Kallus, Sean W. Smith, James Utley Dartmouth

Bad port validation
http://example.com: +8 0

Parser Scheme Host Port

CPython http example.com 80
Hyperlink http example.com 80
rfc3986 http example.com 80

Ben Kallus, Sean W. Smith, James Utley Dartmouth

Improper Unicode handling
http://example.com:1\u06F0

Parser Scheme Host Port Path

CPython http example.com 10
Hyperlink http example.com 10 /

rfc3986 http example.com 10

Ben Kallus, Sean W. Smith, James Utley Dartmouth

What’s left to do

Detecting bug composition
If we have encountered bugs A and B, the presence of both at
once should not be considered a new bug.
We currently solve this by ensuring that mutations are small
enough that multiple bugs are not likely to be introduced in
the same mutation step.

Experiments
We have a lot of experiments left to run, including

Evaluation of different mutation combinations.
Evaluation of differential fuzzing across programming
language boundaries.
Comparison to symbolic execution-based approaches.

Extending our approach to other formats
HTTP (ongoing)

Fuzzing to enumerate differences between standards.

Differential fuzzing across architecture-specific code using
AFL’s QEMU mode.

A better name!

Ben Kallus, Sean W. Smith, James Utley Dartmouth

What’s left to do

Detecting bug composition

If we have encountered bugs A and B, the presence of both at
once should not be considered a new bug.
We currently solve this by ensuring that mutations are small
enough that multiple bugs are not likely to be introduced in
the same mutation step.

Experiments
We have a lot of experiments left to run, including

Evaluation of different mutation combinations.
Evaluation of differential fuzzing across programming
language boundaries.
Comparison to symbolic execution-based approaches.

Extending our approach to other formats
HTTP (ongoing)

Fuzzing to enumerate differences between standards.

Differential fuzzing across architecture-specific code using
AFL’s QEMU mode.

A better name!

Ben Kallus, Sean W. Smith, James Utley Dartmouth

What’s left to do

Detecting bug composition

If we have encountered bugs A and B, the presence of both at
once should not be considered a new bug.
We currently solve this by ensuring that mutations are small
enough that multiple bugs are not likely to be introduced in
the same mutation step.

Experiments
We have a lot of experiments left to run, including

Evaluation of different mutation combinations.
Evaluation of differential fuzzing across programming
language boundaries.
Comparison to symbolic execution-based approaches.

Extending our approach to other formats
HTTP (ongoing)

Fuzzing to enumerate differences between standards.

Differential fuzzing across architecture-specific code using
AFL’s QEMU mode.

A better name!

Ben Kallus, Sean W. Smith, James Utley Dartmouth

What’s left to do

Detecting bug composition
If we have encountered bugs A and B, the presence of both at
once should not be considered a new bug.

We currently solve this by ensuring that mutations are small
enough that multiple bugs are not likely to be introduced in
the same mutation step.

Experiments
We have a lot of experiments left to run, including

Evaluation of different mutation combinations.
Evaluation of differential fuzzing across programming
language boundaries.
Comparison to symbolic execution-based approaches.

Extending our approach to other formats
HTTP (ongoing)

Fuzzing to enumerate differences between standards.

Differential fuzzing across architecture-specific code using
AFL’s QEMU mode.

A better name!

Ben Kallus, Sean W. Smith, James Utley Dartmouth

What’s left to do

Detecting bug composition
If we have encountered bugs A and B, the presence of both at
once should not be considered a new bug.
We currently solve this by ensuring that mutations are small
enough that multiple bugs are not likely to be introduced in
the same mutation step.

Experiments
We have a lot of experiments left to run, including

Evaluation of different mutation combinations.
Evaluation of differential fuzzing across programming
language boundaries.
Comparison to symbolic execution-based approaches.

Extending our approach to other formats
HTTP (ongoing)

Fuzzing to enumerate differences between standards.

Differential fuzzing across architecture-specific code using
AFL’s QEMU mode.

A better name!

Ben Kallus, Sean W. Smith, James Utley Dartmouth

What’s left to do

Detecting bug composition
If we have encountered bugs A and B, the presence of both at
once should not be considered a new bug.
We currently solve this by ensuring that mutations are small
enough that multiple bugs are not likely to be introduced in
the same mutation step.

Experiments

We have a lot of experiments left to run, including
Evaluation of different mutation combinations.
Evaluation of differential fuzzing across programming
language boundaries.
Comparison to symbolic execution-based approaches.

Extending our approach to other formats
HTTP (ongoing)

Fuzzing to enumerate differences between standards.

Differential fuzzing across architecture-specific code using
AFL’s QEMU mode.

A better name!

Ben Kallus, Sean W. Smith, James Utley Dartmouth

What’s left to do

Detecting bug composition
If we have encountered bugs A and B, the presence of both at
once should not be considered a new bug.
We currently solve this by ensuring that mutations are small
enough that multiple bugs are not likely to be introduced in
the same mutation step.

Experiments
We have a lot of experiments left to run, including

Evaluation of different mutation combinations.
Evaluation of differential fuzzing across programming
language boundaries.
Comparison to symbolic execution-based approaches.

Extending our approach to other formats
HTTP (ongoing)

Fuzzing to enumerate differences between standards.

Differential fuzzing across architecture-specific code using
AFL’s QEMU mode.

A better name!

Ben Kallus, Sean W. Smith, James Utley Dartmouth

What’s left to do

Detecting bug composition
If we have encountered bugs A and B, the presence of both at
once should not be considered a new bug.
We currently solve this by ensuring that mutations are small
enough that multiple bugs are not likely to be introduced in
the same mutation step.

Experiments
We have a lot of experiments left to run, including

Evaluation of different mutation combinations.
Evaluation of differential fuzzing across programming
language boundaries.
Comparison to symbolic execution-based approaches.

Extending our approach to other formats

HTTP (ongoing)

Fuzzing to enumerate differences between standards.

Differential fuzzing across architecture-specific code using
AFL’s QEMU mode.

A better name!

Ben Kallus, Sean W. Smith, James Utley Dartmouth

What’s left to do

Detecting bug composition
If we have encountered bugs A and B, the presence of both at
once should not be considered a new bug.
We currently solve this by ensuring that mutations are small
enough that multiple bugs are not likely to be introduced in
the same mutation step.

Experiments
We have a lot of experiments left to run, including

Evaluation of different mutation combinations.
Evaluation of differential fuzzing across programming
language boundaries.
Comparison to symbolic execution-based approaches.

Extending our approach to other formats
HTTP (ongoing)

Fuzzing to enumerate differences between standards.

Differential fuzzing across architecture-specific code using
AFL’s QEMU mode.

A better name!

Ben Kallus, Sean W. Smith, James Utley Dartmouth

What’s left to do

Detecting bug composition
If we have encountered bugs A and B, the presence of both at
once should not be considered a new bug.
We currently solve this by ensuring that mutations are small
enough that multiple bugs are not likely to be introduced in
the same mutation step.

Experiments
We have a lot of experiments left to run, including

Evaluation of different mutation combinations.
Evaluation of differential fuzzing across programming
language boundaries.
Comparison to symbolic execution-based approaches.

Extending our approach to other formats
HTTP (ongoing)

Fuzzing to enumerate differences between standards.

Differential fuzzing across architecture-specific code using
AFL’s QEMU mode.

A better name!

Ben Kallus, Sean W. Smith, James Utley Dartmouth

What’s left to do

Detecting bug composition
If we have encountered bugs A and B, the presence of both at
once should not be considered a new bug.
We currently solve this by ensuring that mutations are small
enough that multiple bugs are not likely to be introduced in
the same mutation step.

Experiments
We have a lot of experiments left to run, including

Evaluation of different mutation combinations.
Evaluation of differential fuzzing across programming
language boundaries.
Comparison to symbolic execution-based approaches.

Extending our approach to other formats
HTTP (ongoing)

Fuzzing to enumerate differences between standards.

Differential fuzzing across architecture-specific code using
AFL’s QEMU mode.

A better name!

Ben Kallus, Sean W. Smith, James Utley Dartmouth

What’s left to do

Detecting bug composition
If we have encountered bugs A and B, the presence of both at
once should not be considered a new bug.
We currently solve this by ensuring that mutations are small
enough that multiple bugs are not likely to be introduced in
the same mutation step.

Experiments
We have a lot of experiments left to run, including

Evaluation of different mutation combinations.
Evaluation of differential fuzzing across programming
language boundaries.
Comparison to symbolic execution-based approaches.

Extending our approach to other formats
HTTP (ongoing)

Fuzzing to enumerate differences between standards.

Differential fuzzing across architecture-specific code using
AFL’s QEMU mode.

A better name!
Ben Kallus, Sean W. Smith, James Utley Dartmouth

Thank You.

Contact me! (benjamin.p.kallus.gr@dartmouth.edu)

This work was funded by the DARPA GAPS and SafeDocs
programs.

https://github.com/kenballus/url differential fuzzing

Ben Kallus, Sean W. Smith, James Utley Dartmouth

