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Abstract—Critical infrastructure stakeholders need to baseline

their systems to understand expected protocol communications.

Baseline behaviors may vary based on operational context.

Expected operations during a maintenance window, for exam-

ple, may be different from normal operations. Furthermore,

constructing system baselines for Industrial Control Systems

(ICS) is difficult and time-consuming. ICS processes generate

artifacts expressed across heterogeneous data sources such as

network traffic and device logs. This paper explores the hypoth-

esis that such ICS artifacts form a language in the language-

theoretic sense. From a theoretical perspective, the variety of

implementations of ICS protocols and constrained environment

of OT networks provide a rich application domain for language-

theoretic approaches. We present several use cases related to the

practical construction of system baselines: grammars for data

fusion, language dialects for device fingerprinting, and security

automata for system baselining.

I. INTRODUCTION

Processes implemented within Industrial Control Systems
(ICS) generate artifacts expressed across heterogeneous data
sources such as network traffic and device logs. This pa-
per explores the hypothesis that these process artifacts form
a language in the language-theoretic sense. The ability to
align and analyze operational artifacts relative to a formal
language specification would practically benefit asset owners
and operators. Research and development of such a capability
provides opportunities to adapt and extend language-theoretic
approaches to construct system baselines. System baselines in-
tegrate network traffic, device logs, and other artifacts to define
a notion of ’normal’ behavior within a specific operational
environment. In addition, system baselines support the ability
to detect anomalous, potentially adversarial, behaviors.

ICS provides a rich domain to explore applications of
principles from language-theoretic security (LangSec). The
expected behavior within facility-level systems is more tightly
constrained than within Information Technology (IT) systems.
As a result, we hypothesize that Operational Technology
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(OT) environments—built to support specific processes—are
more conducive to constructing system baselines than general-
purpose enterprise networks. In addition, many industrial pro-
tocols are specified or implemented in terms of automata with
states distributed across networked devices and this includes
the Distributed Network Protocol 3 (DNP3) and Intenational
Electrotechnical Commission (IEC) 104 protocol. This practice
suggests a natural alignment between the representation of
the behavior of networked devices and automata as well as
the potential to constrain or adapt specified automata for a
particular facility.

A language-theoretic approach has the potential to provide
several benefits to asset owners and operators that improve
upon current practice in system data curation and fusion. A
formal language provides a natural way to normalize expres-
sions of the same notional event expressed across different se-
curity artifacts. Although the application-layer of the network
stack intuitively seems a rich source of high-level semantics,
practitioners tend to construct network baselines—baselines
derived solely from network traffic—from features taken from
the lower layers of the network protocol stack (e.g. source
IP address, destination IP address, source port, destination
port, and protocol). Heuristics expressed as rules constructed
using these fields are often integrated within a Security Infor-
mation and Event Management (SIEM) platform. In contrast,
constructing a language model (e.g. a grammar) that could
recognize operational events would allow one to integrate
syntactic features of process artifacts into expressions of high-
level events, potentially in a protocol-independent manner.
An approach to data fusion that normalizes process artifacts
relative to high-level semantics also could help mitigate against
an informational single point of failure for visibility into and
control over operations.

Furthermore, a language-theoretic approach could be used
for device fingerprinting and to construct system baselines
as automata and potentially even enforceable security poli-
cies [1]. With respect to device fingerprinting, ICS protocols
are notorious for being poorly implemented relative to their
standard. For example, a recent SANS ICS presentation by
Brizinov demonstrated how differences in IEC 61850 protocol
communications can identify specific vendor product lines [2].
Moreover, adversaries may implement industrial protocols



poorly. Gunter et al. demonstrated the ability to detect and
profile the Industroyer/CrashOverride malware by gathering
state misses for network traffic relative to the state machine
within the IEC 104 protocol specification [3]. ICS systems
provide an opportunity to study different dialects of a protocol
and to evaluate how consistent this behavior is across different
platforms and varying operational contexts. Moreover, since
ICS systems are deployed within an operational environment,
measures of physical events (including side channels) could, in
theory, be integrated into a notion of device state to constrain
system behavior based on a specific environment rather than
protocol or device capabilities in general.

a) This Paper: As mentioned above, this paper explores
the hypothesis and practical benefits of viewing artifacts
generated by ICS processes as a language. Section II describes
current industry practice for system baselining ICS systems
and surveys language-theoretic approaches in the literature to
address perceived gaps. Section III provides background on
language-theoretic concepts applied to use cases in Section IV.
Finally Section V concludes.

II. RELATED WORK

Much of system baselining, from an asset owner per-
spective, focuses on network traffic analysis. As noted by
Hanna [4], much of the attack surface resides in the network
and this is consistent with the LangSec view which emphasizes
the need to “identify, analyze, and improve” communications
boundaries within legacy systems [5]. In this section, we
consider the state of the art relative to identified gaps in
practice for ICS data fusion, device fingerprinting, and system
baselining.

A. Data Fusion
The need to fuse network and device data is an acknowl-

edged industry gap. A recent presentation by researchers from
the Salt River Project and Dragos Inc. leveraged OSISoft
PI Historian event frames to enrich security data [6]. In
the presentation, the researchers discussed potential ways to
incorporate operational events with network security events
through data normalization and correlation.

Our ongoing research considers languages over security
artifacts—defined by grammars—as an approach to normalize,
fuse, and analyze disparate data sources [7]. Previous work
in the literature aligns with this approach. Eads et al. used
grammar-guided feature extraction as a mechanism to integrate
domain knowledge for time series classification [8]. McFail
recently presented material on the potential to harmonize data
fields across the IEC 104 and DNP3 protocols [9]. Finally,
Hanna further mentions the need to group actions for a specific
behavior or impact into procedures within ICS systems [4]. In
Section III, we discuss a way to formalize this alignment via
grammars.

Structured formats that have been used previously to align
and integrate data (and which may inform the design of such
languages) include traces. Traces are sequences of events,
ordered in time, that reflect either the execution of software

on a device (execution trace) or communications sent by a
device on a network (network trace). Traces are an abstraction
that bridges the gap between applied disciplines, where they
are used in protocol reverse engineering [10], as well as the
theoretical. For example, properties of traces (e.g. Lamport’s
safety/liveness properties [11]) and sets of traces (hyperprop-
erties [12]) have been used to specify and evaluate whether a
system is secure.

B. Device Fingerprinting

Traditional security baselining in the IT and industrial space
relies on the use of the networking five tuple. The standard
components of the five tuple include source IP address, desti-
nation IP address, source port, destination port, and protocol.
Statistical models are applied to these five values and the
time and frequency of 5-tuple occurrences are used to detect
anomalies. While this approach works on a fundamental level
and summarizes communciations based on the existence of the
message, it lacks any context as to what the communication
included. Although traditional statistical approaches are widely
employed in industry, recent work on cyber baselining by
Schulz et al. suggest that low-level observables lack properties
upon which traditional statistical tools depend [13].

Our research considers features selected for device finger-
printing as part of a tradeoff between constructing such fin-
gerprints and vulnerabilities resulting from differences among
mutually intelligible ICS protocol languages. Sassaman et
al. note that parse tree differential analysis may enhance
fingerprinting-based attacks [5] and a related approach is
recently attested to within the ICS space. Although the Modbus
specification includes function code 43 to read device identi-
fication information, several vendors choose not to implement
this function. Furthermore, in a recent presentation at SANS
ICS, Brizinov outlines how minor differences in the IEC 61850
protocol communications can identify specific product lines
of Schneider Electric PLCs [2]. This approach mirrors similar
software and device fingerprinting from the IT field except it
uses ICS-specific protocol values and variables. Previous IT
fingerprinting approaches leverages specific time-to-live values
in network traffic and known default values in protocols to
identify devices.

C. System Baselining

Language-theoretic approaches to system baselining within
ICS would provide asset owners the ability to construct base-
lines for specific processes as automata. This approach builds
on previous work by Schneider [1], who identified the ability
to represent security policy constraints on execution traces as
automata. In fact researchers have noted while discussing the
problems with Intrusion Detection Systems (IDS) in general,
the promise of approaches such as security automata for
application-specific security policies [5].

Our research seeks to extend and adapt automata-based
security policies to practically construct ICS system baselines
of whitelisted behavior from network and device logs. FSM
inference may provide a process to practically construct such



automata from observed behavior. Within the literature, there
are two types of FSM inference algorithms: active and passive.
Active FSM inference algorithms iteratively query a server to
exhaustively learn all protocol states. In contrast, passive FSM
infer automata from a set of traces. Both approaches have been
applied successfully to computer security. For example, active
FSM inference has been applied to infer botnet command and
control (c2) protocols [14], fuzzing test generation for IoT
network protocols [15], and compare multiple implementations
of the Datagram Transport Layer Security (DTLS) proto-
col [16]. In general, finding a minimized FSM that contains all
traces and only those traces makes passive FSM inference NP
hard [17]. Nonetheless, several papers have been published to
demonstrate the approach’s practical utility including protocol
security flaw detection [17], honeypot behavior [18], and
modeling microservices via Kubernetes netflow data [19].

III. THEORY

This section provides background from language-theory.
After providing a brief, general introduction to language-
theory, we discuss specific aspects of the theory that we apply
to Data Fusion, Device Fingerprinting, and System Baselining
in Section IV.

From the perspective of language theory, a language is a
set whose elements are defined over some fixed alphabet,
a non-empty set of symbols. Recognizers are computational
machines that accept or reject a string as being an element of
a language. Language theory classifies languages into different
classes depending upon the type of computational engine
required to recognize the language and this is known as the
Chomsky hierarchy.

Although the Chomsky hierarchy defines many classes of
languages, we focus on regular and context-free due to their
relevance to applications within the ICS domain. A more
comprehensive discussion of the Chomsky hierarchy from a
language-theoretic security perspective may be found in [5].
The class of regular languages consists of languages whose
strings can be recognized by some finite automaton, or equiv-
alently, a regular expression.

The next most complex language class in the hierarchy are
context-free languages. A context-free language is a set of
strings that can be recognized by a finite automaton with a
stack. In practice, this means that one can write a context-
free grammar to recognize a string in a context-free language.
These languages possess a recursive or hierarchical structure
and are called context free because their elements are gener-
ated by substituting strings for variables called non-terminals
regardless of the context in which they occur [20]. There are
more complex language classes still, for example, a grammar
is at least context sensitive if the structure of that string is
influenced by a value in another part of the string [21].

A. Grammars
As discussed previously, grammars are a formalism that

we can employ to align and normalize security data across
different artifacts generated by ICS processes. We focus on

deterministic context-free grammars or weaker as a tool to
analyze such security artifacts and previous work has demon-
strated this as well within a non-ICS context [7].

A context-free grammar G consists of four components—
terminals, nonterminals, a start symbol, and productions. Ter-
minals are the basic symbols from which strings are formed.
Nonterminals are syntactic variables that denote sets of strings
and one of these nonterminals is called the start symbol.
Productions of a grammar specify rewrite rules that transform
a nonterminal into a string of nonterminals and terminals. The
language of a grammar G is denoted L(G).

Deterministic context-free grammars (or weaker) also allow
the theoretical possibility to evaluate both the equivalence
of two different dialects of the same language as well as
whether a language is a sublanguage of another [5]. Mutually-
intelligible dialects consist of two grammars G and H that
implement the ’same’ language.

B. Security Automata
Enforceable security policies introduced by Schneider, de-

fine a language over execution traces to enforce constraints
aligned with security goals such as memory accesses or file
writes [1]. Specifically, he considers policies based on observ-
ing steps of an execution and where constraints are properties,
constraints that can be evaluated for each element of the trace
sequence. Automata that recognize languages of traces relative
to such properties belong to the class of Execution Monitoring
(EM) policies. Such policies have Lamport’s safety property,
in which traces not in the language of whitelisted traces, have
a finite set of bad prefixes.

In practice, stakeholders need a process by which to define
security automata to enforce such languges. We want to
explore whether traces derived from network and device logs
can be used to define security automata based on whitelisted
communications associated with specific operational events.
To reframe an example provided in [5], given a production that
describes an ICS protocol feature in general (A ::= B | C),
but the only observed branch in that operational environment
is A =) C, then we can construct a security automaton for the
observed whitelisted behavior (A := C) which we expect,
as a subset of the general specification, has the potential to
reduce language complexity.

Furthermore, FSM inference algorithms may provide a
practical approach to construct security automata for system
baselining. Given an input language of network and device
traces—normalized by a grammar—it may be possible to
learn an automaton using passive or active state machine
inference algorithms as described in Section II. If successful,
this would provide algorithms to help stakeholders construct
security automata as a system baselining tool. Such automata
would be relevant within specific operational environments and
if no more powerful than context-free deterministic, would
support evaluating whether sublanguages of communication
protocols used in practice are equivalent. Sublanguages of
industry protocols expressed within ICS processes which could
not be expressed weakly enough to enable an evaluation of



equivalence would be known by asset owners as potential weak
spots for vulnerabilities and candidates for redesign.

IV. USE CASES

A fundamental purpose of ICS networks is to support
Supervisory Control and Data Acquisition (SCADA) of infras-
tructure assets across broad geographic regions and diverse
types of industrial processes. The operation of such systems,
by definition, depends upon secure communication boundaries.
Given the diversity of devices and protocol implementations
within ICS, being able to evaluate equivalence or differences
of mutually-intelligible dialects is important. In this section,
we provide several use cases for language-theoretic approaches
to address gaps in current practice with respect to data fusion,
device fingerprinting, and system baselining.

A. Grammars for Data Fusion
The ability to construct a language to represent the behav-

iors of individual industrial devices enables additional layers
of analysis for industrial asset owners. Grammar productions
can be used to represent expressions of higher-level procedures
(e.g. ’breaker manipulation’) within security artifacts. A sim-
ple example from bulk electric power involes normalizing de-
vice state changes across different protocols and devices. The
process to open a breaker on one device might be implemented
using either the DNP3 protocol as a DIRECT OPERATE
command or via two consecutive commands, SELECT then
OPERATE.

Fusing both expressions of an ICS procedure across com-
mands via a nonterminal symbol may also enable an asset
owner to filter on or build composite commands while abstract-
ing away complexities of specific devices. This includes the
potential to normalize behavior across multiple ICS protocols
by adding productions for a given nonterminal symbolizing a
procedure. For example, some industrial devices use sequences
of Modbus read and write commands to specific register
values to read and manipulate the state of the breaker. Such a
language could recognize the sequence of Modbus commands
as an expression of the higher-level ’breaker manipulation’
concept.

B. Language Dialects for Device Fingerprinting
Industrial device fingerprints derive from both network and

device state information. Network protocols upon which indus-
trial devices rely include proprietary and open communication
protocols. A variety of different standards organizations (e.g.
IEEE, IEC) as well as controlling organizations often publish
common specifications to implement within a device. Despite a
common specification, vendors and adversaries implement ICS
protocols in a variety of different ways and these differences
in mutually-intelligible dialects can provide features for device
fingerprinting.

Algorithms to find differences among mutually-intelligible
dialects, such as parse tree differential analyses, may be
viewed as feature selection algorithms to define classifiers
for device fingerprinting. For example, although the Modbus

specification includes function code 43 to read device identi-
fication information, several vendors choose not to implement
this function. As mentioned earlier, a recent SANS ICS
presentation by Brizinov demonstrate how minor differences
in IEC 61850 protocol communications can identify specific
product lines of Schneider Electric PLCs [2].

Just as industrial Original Equipment Manufacturers
(OEMs) implement device protocol states in a variety of
ways, malware authors also have different compliance levels
with industrial protocol specifications. These differences in
implementation can help to identify and profile malware. the
Industroyer/CrashOverride IEC 104 malware module violated
the state machine of the IEC 104 specification when compared
to the OEM implementation. On certain OEMs and devices,
the Industroyer/CrashOverride malware returns TCP RSTs due
to this violation. Monitoring changes in statistical trends to fi-
nite state machines makes it possible to detect different dialects
of industrial protocols and these dialects may help to detect
and fingerprint malware [3]. Finally, we note that although a
diversity of vendors and devices can help asset owners finger-
print devices and mitigate common-mode vulnerabilities, this
diversity may also introduce vulnerabilities due to differences
among mutually-intelligible protocol implementations.

C. Security Automata and System Baselining

Many industrial protocols consist of multiple states dis-
tributed across networked devices. At a high level, many
industrial devices can be in a program mode, where they accept
new logic programs; stop mode, where they are not executing
logic; and run mode, where they execute the embedded pro-
gram. The overarching mode of the device may limit what
protocol actions can occur. For example, a device will not
allow the industrial communications associated with writing
a new program to a device unless that device is in program
mode; a device ignores OPERATE commands while in stop
mode.

In such a scenario, a high-level enforceable security policy
for system baselining could construct a property over network
traces that maps a function code for a DNP3 command to
either ENABLED or REJECT states given the mode. Such
a mapping is a property as it can be checked for each
element in the trace sequence and a safety property since no
prefix of a recognized sequence of commands can contain a
command mapped to the REJECT category. Here we assume
that when the security automaton implementing this system
baselining policy encounters an ignored command, it alerts
to indicate anomalous behavior. Another set of examples are
the authentication sequences for DNP3 and IEC 104, which
consist of a sequence of commands and values with a strict
order of operations. Devices enforce the policy of the state
machine by either ignoring packets sent out of state (thereby
not enforcing a safety property) or sending a TCP RST back to
the offending host to reset the connection (enforcing a safety
property).



V. CONCLUSION

This paper explored the hypothesis that specific operational
events in ICS/OT networks form a language whose strings
are security artifacts collected across network and device
data. Constructing security automata for sublanguages that
are used within an ICS system define a system baseline with
multiple potential benefits. First, facility or environment-driven
baselining could reduce the language complexity of inter-
device communications within ICS networks from a protocol
in general to language constructs which are actually used in
a specific facility or environment. Second, system baselines
could help asset owners consciously and systematically choose
between the ability to fingerprint devices on a network or
mitigating common-mode failures through device diversity and
introducing vulnerabilities due to non-equivalent ICS protocol
dialects. Finally, given that the same procedure may have
multiple implementations within and across protocols, it may
be possible to evaluate tradeoffs among different ICS protocols
based on the degree to which they reduce language complexity,
thereby realizing the principle of least privilege, an important
traditional security concept for modern-day, zero trust archi-
tectures. In practice, such automata could enforce baselined
communications policies for micro-services segmented by
Software Defined Networking (SDN) technologies.

ICS and OT networks provide a rich application domain
for language-theoretic security. These systems are vital to our
critical infrastructure systems and civilization as a whole. The
intent of our research, if successful, is for asset owners to
systematically obtain deeper understanding of their systems,
and to discover unexpected behaviors indicative of potentially-
adversarial behavior.
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