
Corpus-wide Analysis of Parser Behaviors via a
Format Analysis Workbench

Pottayil Harisanker Menon∗
Galois, Inc.

hari@galois.com

Walt Woods∗
Galois, Inc.

waltw@galois.com

Abstract—As the number of parsers written for a data format
grows, the number of interpretations of that format’s specification
also grows. Often, these interpretations differ in subtle, hard-to-
determine ways that can result in parser differentials – where one
input passed to two parsing programs results in two semantically
different behaviors. For example, two widely-used HTTP parsers
have been shown to process packet headers differently, allowing
for the exfiltration of private files. To help find, diagnose, and
mitigate the risks of parser differentials, we present the Format
Analysis Workbench (FAW), a collection of tools for collecting
information on large numbers of parser/input interactions and
analyzing those interactions to detect and explain differentials.
This tool suite supports any number of file formats through a
flexible configuration, allows for processing to be scaled horizon-
tally, and can be run offline. It has been used for results including
the analysis of more than 1 million PDF files and unifying
parser behaviors across these files to identify a gold standard
of validity across multiple parsers. The included statistical tools
have been used to identify the root causes of parser rendering
differentials, including mislabeled non-embedded fonts. Tools
for instrumenting existing parsers are also included, such as
PolyTracker, allowing for the analysis of blind spots which
might be used to craft differentials for other parsers, or to
exfiltrate large quantities of data. Through allowing users to
characterize parser behaviors at scale against large corpuses of
inputs, the FAW helps to mitigate security risks arising from
parser behaviors by making it tractable to resolve examples of
differentials back to their behavioral causes.

I. INTRODUCTION

As data formats age, they tend to become more complex as
convenience features are added. In turn the programs used to
parse those formats also become more complex, particularly
as multiple different parsing programs are developed. The
authors of these programs are likely to make different deci-
sions regarding the interpretation of the format specification,
which can lead to dangerous parser differentials. Parser dif-
ferentials arise when two parsers interpreting identical inputs
produce semantically different behaviors [1]. These behavioral
differences can be exploited by attackers to access private
files or take control of hardware. For example, a recently
documented HTTP parser differential1 demonstrated how a
well-crafted packet with disagreeing Content-Length and
Transfer-Encodering fields results in an HTTP request
that passes an outer gateway and leaks intranet files. Once
found, these vulnerabilities are easy enough to patch, in

*These authors contributed equally to this work.
1https://portswigger.net/research/browser-powered-desync-attacks

this case by having the gateway rewrite packet headers that
disagree. However, finding these vulnerabilities can be quite
challenging given the scale of both parser program behaviors
and the possible inputs that might break them. Fuzzing is
an effective pre-hoc testing framework for finding potentially
dangerous inputs; we instead focused on post-hoc analyses that
might help analysts find actively exploited parser differentials,
and help identify the root causes of those differentials to help
format authors learn to avoid those root causes in the first
place.

A. Motivation

Files or other inputs that actively exploit a parser can be
difficult to find in the wild. While there have been efforts to
collect millions of files from available data sources [2], sorting
through these files to identify parser differentials or exploits
remains a time-consuming task. Our goal has been to turn
something that previously took weeks into mere hours or days:
to help a format analyst go from a vague idea of an exploit or
differential to concrete evidence and an understanding of how
that exploit compares to millions of other files.

Often, a format analyst must decide which kinds of differ-
entials or exploits they are looking for, and produce ad hoc
tools that look for these signs. Next, after these tools have
been run against the corpus, it is likely that these tools must
be tweaked and re-ran against the corpus. These round-trip
queries against the collection of parser inputs can take days or
weeks, motivating a need for tooling to accelerate these loops,
and make the manual parts of the process more automated.

In practice, we additionally found that considering the
outputs of multiple parsers could bring additional context to
each others’ errors, or to hits from ad hoc tools looking for
differentials or exploits. As a direct result of the scaling desired
when running these ad hoc tools to find potentially insecure
files in the wild, it became clear that large corpuses were
also rich in statistical correlations, allowing for more concrete
discoveries that would help explain the various outcomes from
parsers and tools for identifying parser security violations. This
would also enable, at scale, the integration of various taint
tracking or other instrumentation techniques that would shed
additional light on parser behaviors.

By integrating all of these tools and techniques into a single
workbench, users are empowered to create new tools, compare
them to extant parsers for formats, and compare/contrast

1

https://portswigger.net/research/browser-powered-desync-attacks

implementations, across millions of files, without needing to
manually run or integrate much information.

II. CONTRIBUTIONS

While designing our approach, it was important to refine a
list of capabilities that should be covered. To ensure utility
for the analysis of parser/input interactions, and to qualify
interactions of interest, we identified several additional use
cases:

• When debugging an error within a single parser, it
would be convenient to find other inputs that trigger the
same error. This could be solved by keeping a database
of parser/input interactions, and providing a means of
looking up similar inputs based on observed errors.

• It must be possible to find disagreements amongst multi-
ple parsers. Therefore, any movement toward a solution
in this space would be able to store a parser/input cross
product, and allow for the comparison of validity or other
qualities across parsers.

• Once a error or differential is found, it would be con-
venient to have tooling to help narrow down the root
cause, ideally all the way down to the grammar level. Par-
ticularly for formats with data-dependent parses, modern
parsers can exhibit very complicated interactions amongst
bytes in the input. By distilling these interactions to
smaller root causes – ideally, as a succinct grammar that
perfectly captures inputs triggering the error or differen-
tial – users could be presented with enough information
to locate source code connected to the issue and construct
minimal test cases to verify a fix.

• The stdout/stderr of a parsing program would probably
be insufficient to find these root causes; that is, deeper
features are needed. By leaning on modern technologies
such as taint tracking or grammar inference, we could
greatly expand the resolution of proposed root causes,
allowing for tooling that would continue to improve as
these methods improve.

To provide capabilities for all of these use cases within a
shared framework, we present the Format Analysis Workbench
(FAW)2, a publicly available, open-source workbench for file
format analysis. While the intent of these use cases all live
in a similar vein – diagnosing extant risks and helping to
mitigate future risks – multiple distinct analysis approaches
tended to complement one another. As such, the FAW is an
easy-to-extend framework and consolidated user interface (UI)
for input corpus analysis. Its architecture and a selection of
high-level capabilities are shown in Fig. 1.

The FAW enables corpus-wide analysis of features both
through novel technical ideas for finding relationships amongst
features, and in providing a workbench for applying these tech-
niques to a user’s corpus, analyzing results, and prototyping
new analyses or parsing programs.

2https://github.com/GaloisInc/FAW

A. Data model

Broadly, we adopted the view that binary features are a
well-suited, general way of storing information concerning
the interactions between a parser and its input. Is the input
document of type PDF1.7? Did the program crash when trying
to parse its input? Was an error message about a malformed
header printed? Was a specific function called within the
program? Then, understanding interactions between a parser
and its input became a question of associating these specific bi-
nary features: e.g., perhaps PDF 1.7 causes malformed header
messages, indicating an implementation bug. This generalized
insight was broadly owed to work from Ambrose et al., who
argued that this view of program/input interactions constituted
a topology [3].

In general, we found that no single technique or method
of dealing with these features was optimal for all use cases.
Therefore, the extensible design of the workbench, coupled
with the flexibility of the underlying data model, provides
users with a suite of tools for navigating and better understand-
ing complex relationships between program behaviors and
specific input patterns. The FAW has enabled an unprecedented
breadth of results within Defence Advanced Research Projects
Agency (DARPA)’s Safe Documents (SafeDocs) program;
those results are summarized in Section III, with additional
technical details in Section IV.

III. RESULTS

To demonstrate the utility of this unified framework ap-
proach, we highlight several results relevant to DARPA’s
SafeDocs program. These results were all achieved through
the technologies included in the FAW.

Offline, parallel processing enabled ingestion and anal-
ysis of more than one million files. The processing time
of the FAW is highly dependent on its configuration and
the input format being explored. Heavy workloads benefit
from the distributed computation management handled by the
FAW, which allows multiple computers to work together when
populating the parser/input cross-product database, without
requiring access to the internet. For example, we ran 20
separate parsers against 1 040 628 PDF files in about 13 days,
leveraging 96 cores spread across 4 separate machines. Some
of these parsers – such as a FAW-specific test for rendering
differentials between MuPDF and pdftoppm3, which takes
about 10 seconds per file on its own.

On a 10 000 subset of that corpus, the parsers included
result in 320 717 novel binary features; novel features scale
sub-linearly to corpus size. Some of these are stored as real-
valued key/value pairs in the database, which are thresholded
to translate them into binary features suitable for the included
analysis tools.

Achieved parity with a gold standard of input validity.
The SafeDocs goal for being able to detect inputs that were not
valid PDF according to another team’s generated gold standard
was 0.01% false positives with as low of a false negative

3https://mupdf.com/ and https://poppler.freedesktop.org/

2

https://github.com/GaloisInc/FAW
https://mupdf.com/
https://poppler.freedesktop.org/

Topological analyses

Gold standard comparisons

Root cause analyses

Filtering and
discrepancy
analyses

Parallel file
processing

Continuously integrated reports

Input corpus

FAW

Provides…

Fig. 1: An overview of the FAW. A parallelized backend populates a database with the cross product of all inputs with all available parsers.
Multiple UI tools are provided to aid users in understanding parser behaviors, and can be used for gold standard comparisons, topological
analyses, filtering and analyzing discrepencies, finding root causes, and generating continuously up-to-date reports.

rate as possible. The FAW’s tools allowed for us to rapidly
piece together alarm logic that matched the gold standard with
0% false positives and 0.5% false negatives. Achieving these
numbers required about 2 hours of analyst time. The regular
expressions derived to achieve these results were relatively
complex, such as this one which finds unembedded fonts that
are not of a family commonly embedded in operating systems:

^parser\-xpdf\-pdffonts_FONT(?!
Arial[-,]).*EMB no.*(?<!/(arialbd|[Cc]
our\S*|[Hh]elve\S*|[Tt]imes\S*)\.ttf)$

↪→

↪→

Building this expression was relatively quick due to the
efficacy of the confusion matrix filtering included in the FAW.
If a user would like to find parser features not expressible with
regular expressions, then wrapping those parsers in a basic
script to convert them to a more easily searchable format is
supported.

Created a new distribution for analyzing NITF files
in 10 minutes through developer-friendly infrastructure.
Designed to also be useful for proprietary and private formats,
the FAW was extended with a new NITF distribution imple-
menting two parsers with only 10 minutes of developer time.
This was supported through continuous rebuild-and-reevaluate
functionality built into the FAW. Multiple formats are included
out of the box, including iccMAX, NITF, and PDF, while
private distributions leveraging non-public parsers have been
produced for MavLink, netcap, RTPS streaming data, DDS,
and JPEG.

Proven ability to identify root causes for generic er-
ror messages. Parser error messages can be confusing or
incomplete. To help analysts rapidly find root causes from
these vague messages, the FAW includes statistical tools
for finding IMPLIES relationships amongst error messages,

further detailed in Section IV-D. For example, the popular
QPDF4 parser has a generic “file is damaged” error. Without
looking at the source code, this message does not imply any
specific cause. The tools included with the FAW show that this
error message is implied by MuPDF’s “cannot find startxref”
and “object missing ’endobj’ token” errors, helping ground
expectations around what QPDF considers a damaged file.

Identified causes of significant parser differentials be-
tween PDF renderers. Through a number of filters, an image
comparison tool was developed that flagged 422 files (out
of 10000) with significant visual differences when rendered
through the MuPDF and pdftoppm programs. Via the statistical
tools previously mentioned, and by pulling in data from other
PDF parsers, we were able to trace the rendering differentials
to a number of root causes, primarily embedded fonts that
were labeled incorrectly. For example, multiple fonts were
marked with the font type of “Type,” and all files exhibiting
this behavior resulted in a differential.

Identified polyglot files via PolyFile integration. PolyFile5

is a utility for inspecting the semantic structures of files, and
includes the ability to detect polyglots through the more than
260 included parsers for different file types. By pairing this
with the infrastructure provided by the FAW, we were able to
find 24 polyglot files within a 10 000 file corpus.

Found common blind spot triggers, where a bad actor
might exfiltrate data or craft parser differentials, via
PolyTracker integration. PolyTracker6 adds taint-tracking
capabilities to existing parsers via a recompilation step. Part of
this tooling includes the ability to locate “blind spots,” or bytes

4https://github.com/qpdf/qpdf
5https://github.com/trailofbits/polyfile
6https://github.com/trailofbits/polytracker

3

https://github.com/trailofbits/polyfile
https://github.com/trailofbits/polytracker

where most values would not affect the outcome of parsing the
input [4]. By combining this with the FAW’s tools for finding
root causes, we were able to identify root causes for some
commonly ignored bytes. For example, the /Identity-H
encoding in PDFs is often created by the Joomla! CMS, and
permits users to exfiltrate whatever information they’d like
without affecting the rendered output.

Provided ability to run state-of-the-art grammar infer-
ence on any corpus, yielding byte patterns that are more
discriminative than n-grams. The ideal outcome of root
cause analysis would be the capability to point to specific
grammar elements or byte payloads that trigger a specific
behavior or error message, at scale and across an entire
corpus. To that end, we have experimented with including
the Reinforcement Learning for Grammar Inference (RL-
GRIT) algorithm [5] in the FAW, allowing users to look at
specific parts of their input corpus and automatically generate
annotate inputs with byte patterns that are likely to trigger
behavior in a parser. While the underlying technology needs
to be further developed, we have been able to draw links
between e.g. Javascript errors in PDF files and the inclusion
of the /Url key. By expanding these capabilities, we plan on
moving further toward being able to identify specific grammar
elements that trigger parser behaviors of interest.

IV. CAPABILITIES

Understanding an input corpus at scale requires tooling for
running that corpus through one or more parsing programs
that can output details about the input’s interaction with that
program. The FAW consists of a backend, which performs all
of the heavy lifting for the parser/input cross product, and a
frontend for understanding the interactions between the input
corpus and parsers of interest (Fig. 1).

The backend generates and aggregates results from the cross
product between a corpus of inputs and a population of parsers.
Parsers only require an executable binary file, and can be
written in any language. This processing can happen on a
single machine or in parallel, using what the FAW calls a
“teaming” setup. Teamed processing can happen on a private
network without external internet access.

Once this parser/input cross product is generated, or even
once it is partially populated, the FAW allows the user to
specify analysis sets, or groups of files that should be ex-
amined together, as a way of controlling the scale (and thus
speed) of the user’s analyses. To help users understand the
vast output from processing an input corpus against all parsers,
users are provided with multiple distinct tools for exploring the
interactions between inputs in the analysis set and the parsing
programs that were run against those inputs.

Following are specific technologies and capabilities con-
tained within the FAW; unless otherwise noted, similar results
are all available out of the box for a user-provided corpus,
without additional work from the user.

A. Easy to get started
An instance of the FAW can be launched by first cloning

the FAW repository and then invoking the startup script

Fig. 2: A snapshot of the FAW UI.

workbench.py with two paths, one to a distribution folder
and another to the file corpus being studied. A FAW dis-
tribution is essentially a specific configuration of the FAW
and typically associated with a specific file format or corpus.
Section IV-C1 describes distributions, their content and how
to make your own in more detail.

The FAW repository contains example distributions for a
number of extant input formats, including PDF. These can be
used as-is or as a template when creating new distributions.
The repository includes small test corpora as well, to allow for
easy experimentation. For example, an instance of the included
PDF distribution and test corpora can be launched from the
root directory using the command: ./workbench.py pdf
test_files/pdf. The workbench script builds a docker
image for the specified distribution on the fly and launches a
FAW instance that can then be accessed via a web browser
pointed to the localhost and customizable port (default:
8123). Figure 2 shows a snapshot of the FAW UI after it
starts up and the user clicks “Reprocess Decisions.”

Additionally, the workbench script is capable of pre-
building and saving a single, unified docker image for a
FAW distribution. In addition to running locally, the FAW
can also be deployed in a multi-server “teaming mode”,
powered by pyinfra7, which can be particularly useful when
working with large corpora. The repository contains the
workbench-teaming-init.py script which can be used
to create the necessary pyinfra inventory and deploy files,
which can then be used to automatically install the prereq-
uisites on target machines, deploy FAW images and set up a
FAW system service on each machine. In this mode, the target
machines process files independently and in parallel, but share
a single database, with the FAW UI accessible via a webserver
running on the database’s machine.

7https://pyinfra.com/

4

https://pyinfra.com/

B. Filtering and discrepancy analyses

FAW distributions include file parser plugins to parse files
and extract features from it; additional details on specifying
these are in Section IV-C2. While it may be possible to
determine the validity of a file by perusing the features
manually, at least for small corpora, it is often more convenient
to have these decisions made automatically based on user-
supplied criteria. The FAW supports a simple, custom domain
specific language (DSL) for expressing decision criteria and
provides a user interface to quickly edit and reprocess the
decisions.

The DSL allows decision criteria to be specified in terms of
filters and outputs. Filters are themselves defined as groups of
regular expressions and are matched against features generated
by parsers; if any of the features generated for a specific
file match any of the filter criteria, the file matches the
filter. Outputs represent aggregations of filter criteria and are
defined in terms of compound boolean expressions over filters.
Listing 1 shows a snippet of a decision DSL that defines
two filters based on the features emitted by the mutool
clean command: MuCleanAccept accepts a file as long as
mutool exited with a zero exit code, while MuCleanError
accepts a file if it failed to exit with a zero exit code or it
emitted a feature that matches the specified regular expression:
.*[Ee]rror(?!: .*marker). The snippet also defines
an output: the status is set to be “valid” if and it satisfies
the conditions specified by MuCleanAccept and does not
satisfy those specified by MuCleanError; otherwise the
status is set to “rejected”.

Adjusting the decision DSL also influences the FAW UI di-
rectly. Filter and output clauses in the DSL, like status and
MuCleanAccept from the previous example, will appear in
the UI as radio buttons. When selected, these filter the file list
to show only those files that satisfy the criteria specified in
the DSL.

In situations like regression testing or working with a known
file corpora, the expected features and status (valid/invalid)
associated with each file in the corpus may already be known.
The FAW allows users to upload reference decisions as struc-
tured JSON files. These “gold standard” decisions are then
automatically compared against those made by the current
decision DSL, with discrepancies highlighted to allow users
to directly investigate the specific files that failed to match
expectations.

While these regular expressions might seem time consuming
to craft, the FAW’s core search UI and various plugin-based
capabilities are designed to make it a relatively quick process.
Achieving our state-of-the-art results on a large PDF corpus
only took a developer familiar with regular expressions about
2 hours.

C. Extensible

As a general purpose tool for understanding corpora, the
FAW is expected to work with a diverse set of input formats,
format-specific parsers, and visualization tools. Instead of
attempting to provide a monolithic set of tools, the FAW uses

filters:
MuCleanAccept:
^mutool-clean_.*<<workbench: Exit code

0>>↪→

MuCleanError:
^mutool-clean_.*<<workbench: Exit code

(?!0)↪→

^mutool-clean_.*[Ee]rror(?!: .*marker)
outputs:
status:
"valid" is MuCleanAccept &

!MuCleanError↪→

"rejected" else

Listing 1: Decision DSL

a plugin architecture with well-defined extension points and a
plugin API that allows users to create custom plugins that
fit their specific corpus and workflow. For example, when
working with a new file format, it is possible to create plugins
that parse the format and/or visualize data from inputs in the
corpus. The primary types of plugins supported by the FAW
are described in the following sections.

1) Creating a new distribution: A distribution is typically
created as a separate folder under a cloned FAW repos-
itory. The distribution folder usually contains a top-level
config.json5 file as well as a collection of plugins. By
convention, each plugin is placed in a subfolder of its own
and with its own configuration file. However, this is not
mandatory and the configuration files are merged with the top-
level configuration before any processing. In addition to any
plugin-specific configuration, these files can also specify the
process to build and install any dependencies that might be
needed at runtime; this process can be as simple as installing a
system package or as complex as recreating a full development
environment and performing a multi-stage build. Further, it is
possible to restrict the set of files/binaries that are copied to
the final distribution image allowing for a clean separation
between the build process for a plugin and the binary artifacts
necessary to execute it at runtime.

When the workbench.py script is invoked with the
path to a distribution folder, the configuration files for that
distribution are used to construct a Dockerfile, which is then
built and launched as a container running the FAW instance.
The container includes the database, frontend, and backend
processes required; while a single container potentially causes
build dependencies, the ease of distributing the single image
underlying the container across networks has proved advanta-
geous for getting users up and running.

Listing 2 contains a simple configuration file (with some
fields elided for conciseness) for an example CSV distribution.
The build subsection of the configuration describes the
installation process for the simple CSV validator described in
Listing 3: the script is copied in to the docker image with the
ADD command and the copy_output specification copies it
to its final location in the image. While unnecessary for this

5

{
name: 'galois-workbench-csv',
parsers: {

csvvalidator: {
exec: ['csvvalid', '<inputFile>'],
version: '0.1',
parse: {

type: 'regex-counter',
version: '1',
stdout: {

'(.*)': {
nameGroup: 1,

}
}

}
}

},
build: {

stages: {
base: {

from: 'ubuntu:22.04',
commands: [

'RUN apt-get update && apt-get
install -y python3'↪→

]
},
csvvalidator: {

commands: [
'COPY ./csv/csv_validator.py

/tmp/csv_validator.py'↪→

],
copy_output: {

'./tmp/csv_validator.py':
'/usr/bin/csv_validator'↪→

}
}

}
}

}

Listing 2: Configuration file for a CSV distribution

simple configuration, the latter specification is beneficial when
the build process is complex, but only a small number of build
artifacts are required to execute at runtime. The parsers
section contains a specification for a parser based on the
validation script above: it specifies the command line to run
the validator as well as the mechanism to map the validatorś
output to parser features; in the current case, all output lines
are captured directly and stored as features.

2) Parser plugins: The FAW provides support for parser
plugins that can both validate file formats as well as help to
surface format specific features for later examination. When
invoked, such plugins execute an external command to parse
the specified file. The FAW automatically captures the exit
code as well as the standard output/error from the execution

import sys
import csv

with open(sys.argv[1], newline='') as f:
r = csv.reader(f)
count = len(next(r))
for row in r:

assert len(row) == count

Listing 3: Simple CSV validator

and offers the ability (via the configuration file) to map these to
validation status and/or human-understandable features stored
within the FAW database. This mapping is specified using
regular expressions, and typically takes the form of a named
capture group with the ability to modify it via a regex
replacement specification or capture as a count. The CSV
validator in Listing 3 is an example of a parser plugin.

3) File detail plugins: File detail views are plugins that
visualize the contents of a file (or a subpart of it) by rendering
it as HTML or another browser-displayable content format. As
with parser plugins, file detail view plugins are configured to
run an external command that takes a file as input and streams
out the transformed content to the standard output. The FAW
captures this input and renders the content in the browser using
the specific MIME type provided in the configuration. One
prominent file detail view is provided by PolyFile8, which
can turn most file formats into an interactive HTML report
that allows users to view and search data structures contained
within the file.

4) Decision / corpus-level plugins: Unlike the previous
plugins which operate on individual inputs in a corpus, de-
cision plugins operate on the whole corpus and therefore can
aggregate and visualize information concerning the dialects
or common subpatterns within the corpus’ format. As with
other plugins, launching a decision plugin involves running
a configured external command. However, as one of the
most general types of plugins available in the FAW, these
commands can potentially access the complete corpus, as
well as the features captured during parser invocations for
each file. Further, it is also possible to invoke these plugins
with additional user-supplied arguments, which are then made
available to the external command.

The command is expected to stream its results in JSON line
format where each object corresponds to a file in the corpus
and contains a series of key/values; the data is captured and
stored by the FAW. The FAW offers an additional level of
flexibility by allowing these commands to optionally create
an custom HTML file at a FAW-specified location; if such a
file is produced, the FAW will capture the contents and render
it as part of its UI. This enables the plugin to insert entirely
new UI elements and actions (via embedded Javascript) in to
the FAW UI. The root cause analyses (Section IV-D) provided
with the FAW are implemented as decision plugins.

8https://github.com/trailofbits/polyfile

6

https://github.com/trailofbits/polyfile

5) Pipeline plugins: The FAW allows for complex plugins
that involve multiple stages, and can even generate new,
data-driven parsers based on inputs from the corpus. See
Section IV-G for an example.

6) Transforming inputs and universal output parsers:
Parser and file detail plugins described in the previous sections
work on individual inputs provided to them by the FAW.
By default, the FAW passes individual inputs as-is directly
from the corpus to the plugin(s). However, it also provides
the ability to dynamically transform inputs before they are
processed.

Input transformers are configured to run an external com-
mand that accepts a file as an argument and emits the trans-
formed content on the standard output, which is then passed
to parsers and plugins. These transformed inputs are treated
as transient and are not permanently stored on the file system.
This allows for the mechanism to work well with transformers
that significantly expand the seed input, including input fuzzers
like zzuf.

The FAW also supports a related notion of universal parser
parsers, which operate on the output of every configured
parser and produce additional features for the inputs. They
are configured to run an external command that accepts a
specially formatted stream on its standard input; the formatted
stream includes the name of the parser that triggered this
transformer invocation as well as the contents of standard
output and standard error emitted by the external command
corresponding to that parser. The command is expected to emit
a JSON dictionary of new features to the standard output. By
invoking a universal parser parser on the output of each other
parser, special considerations for a format that apply to all
parsers may be unified at a single implementation point.

D. Root cause analyses

It was previously proposed that groups of messages in files
could be viewed topologically [3], [6], with the resulting struc-
ture providing mathematical relations that could be analyzed
to reveal logical sets of related files [7], [8]. This can be
visualized as a Dowker plot, which is included with the FAW
in a “Dowker Visualization” plugin.

This topological work is excellent at segmenting the input
corpus based on minimal differences – that is, it draws edges
between file clusters which are closely aligned in feature
space. On the other end of file format analysis for the SafeDocs
program, many of the questions that needed answering were
related more to specific features than file clusters: what caused
a given exit code or parser differential? In the extreme, a best-
case solution to this would be a grammar succinctly and per-
fectly matching only inputs that would trigger the condition.
Grammar inference being a difficult problem, the next best
approache seemed to be finding other features that robustly
implied – or at least greatly contributed to the likelihood of –
a desired condition.

To achieve this, we turned to the absolute risk reduction
metric [9]. For our use case, we adapt it as ARR(A,B) =
P (A|B) − P (A|¬B), where A and B are two features of

Fig. 3: Excerpt from the “Clustering” plugin showing risk factors for
a “file is damaged” warning on a corpus of 10 000 PDF files.

interest. Conveniently, this metric becomes zero when the two
features are independent, 1 when they are identical, and −1
when they are inverted (A = ¬B). To filter out noise, we
additionally do not consider features with min(P (A), 1 −
P (A)) < ϵ. As the metric is asymmetric, a trick we use
is to take ARR(A,B) iff |ARR(A,B)| > |ARR(B,A)|,
and ARR(B,A) otherwise. The result is that IMPLIES re-
lationships have large values, regardless of the direction of
implication.

For diagnostics, this simple metric is shockingly powerful –
if, e.g., exit code Z only occurs on files which produce error
message Y , then exploring either of those features will reveal
the other with a large associated risk metric.

This functionality is exposed through the “Clustering” deci-
sion plugin in the FAW. Figure 3 shows what the results look
like for the “file is damaged” message from the Section III.
To make traversal easier, the plugin allows users to focus on
any message shown in the plugin, which then shows messages
related to that message.

E. Rendering differentials

For precise rendering formats, such as PDF, parser differ-
entials manifest as semantic differences when rendered on
different parsers. For example, a paragraph’s text might not
read the same, or an image might be missing some key detail.
A rendering differential detection algorithm specifically for
document content was developed and included in the FAW
as part of the SafeDocs program. Existing algorithms often
reported single pixel offsets or slightly different output color
selections as large differences. Our algorithm was designed to
reduce these false positives, only flagging files that demon-
strated true differentials, allowing for the root causes of such
differences to be identified.

The new algorithm, expressed in the “img_diff” function,
is available online9 and follows Algorithm 1.

9https://github.com/GaloisInc/FAW/blob/master/pdf/schizo_test/main.py

7

https://github.com/GaloisInc/FAW/blob/master/pdf/schizo_test/main.py

Algorithm 1: Image differencing algorithm for detect-
ing semantic differentials

input : Two images A, B
output: δ = A distance measurement; large values

indicate differentials
1 A,B ← trim 1 pixel off all edges ; /* PDF

renderers treat the border
differently; fix that */

2 B ← align B to A using a geometric transform [10] ;
/* Fix other layout differences */

3 A,B ← hipass(A), hipass(B) ; /* Apply
1-pixel high pass filter to minimize
differences resulting from constant
background color differences */

4 A,B ← gaussian(A), gaussian(B) ; /* A
kernel width 2 Gaussian blur to make
multi-pixel differences more
prominent */

5 Amax, Bmax ← maximum absolute value within 9x9
convolutions ; /* Prepare for darkness
correction */

6 Ascaled, Bscaled ← ϵ+A
ϵ+Amax

, ϵ+B
ϵ+Bmax

; /* Correct
for render darkness, ϵ = 10 */

7 δ ←max root-mean-squared error over 50x50 windows
from |Ascaled −Bscaled| ; /* Consider
maximum localized difference */

F. PolyFile / PolyTracker integration

Two parser / file analysis tools included in most FAW
distributions are PolyFile and PolyTracker [11].

PolyFile is a unified file format tool that includes parsers for
more than 263 MIME file types. Within the FAW, it is used for
two purposes: 1) to provide polyglot detection, where an input
is a valid instance of multiple file formats, and 2) to provide
a file detail view that allows users inspect specific parsed
structures or byte regions within the file. PolyFile includes the
ability to decompress and scan compressed streams, making
it invaluable as a microscope for diagnosing individual file
behaviors.

PolyTracker is an instrumentation toolkit for existing parsers
that adds a variety of taint-tracking-enabled functionality.
Notably, this includes both control flow tracking algorithms
that can be used for constrained forms of grammar inference
[11], and an ability to identify “blind spots,” or bytes that do
not affect the parser’s interpretation of bytes in a given file,
even when mutated [4]. Blind spots are potentially critical
to preventing parser differentials, as when parsers disagree
on blind spots, one parser’s behavior will be unaffected by
crafting those bytes for another parser.

G. Grammar inference / pipeline plugins

Data-driven parsers, such as those learned via machine
learning (ML), require additional infrastructure to manage the
training and application of the model. These are handled via a

pipelining plugin system, which allows for an acyclic network
of “Tasks” to be defined. Each task is a processing chunk
whose results take significant amount of time, motivating the
need to save the output once it is computed. These tasks are al-
lowed to potentially crash, and so convergent computing hooks
are provided to allow resuming from a previous checkpoint.

Once all tasks are completed, users may define parsers to
be included in analysis sets, or file detail and decision plugins
using the result of the pipeline. A notable usage of the pipeline
plugin system is integration with RL-GRIT [5], which provides
an ability to learn grammatical snippets of data that are more
efficient and produce fewer records in the database than N-
grams. This has shown utility for root cause analysis, though
the underlying grammar inference method needs additional
work to be of significant utility.

H. Developer-friendly features for rapid parser development

The FAW provides a developer mode to facilitate rapid
development of both external parsers and FAW plugins. When
operating in this mode, functionality to live-reload various plu-
gins or inputs in the corpus based on the user’s changes. When
a parser is changed, and the user bumps the corresponding
version field in its configuration, the FAW will recompute the
necessary differences in the database with as little work as
possible. This turns the FAW from a purely analytic tool into a
powerful integrated development environment (IDE), allowing
for users to explore the consequences of code changes at scale
against an entire corpus.

1) Continuously integrated reports: While the FAW pro-
vides tools and a customized user interface to examine and
visualize the behavior of a parser against a set of files, it also
provides support for use as a continuous integration (CI) tool.
The CI interface provides access to the core features of the
FAW, without the need for a human to go through the UI or
needing direct access to the FAW’s host machine. In particular,
the CI interface supports adding, updating and reconfiguring
parsers on a running FAW instance, (re-)executing the new
versions against the corpus, and reporting results. The interface
can be accessed via a web API or a command line tool,
enabling its use in many continuous integration scenarios, for
example, to track regressions during the development of a new
parser or the modification of an existing one.

When a parser configuration is updated and pushed to the
FAW instance via the web api, a rebuild of the updated parsers
is initiated in a separate docker container without disrupting to
the currently running instance. Once the rebuild is complete,
the new binaries for the parsers are copied to the original FAW
instance. It then triggers a reparsing of files using the updated
parsers. The CI interface provides an endpoint to (re)process
the parse results based on a specific decision DSL and retrieve
aggregated results.

V. RELATED WORK

The FAW is a generalization and refinement of the “PDF
Observatory” first introduced in [12]. At the time of that
publication, many of the extensibility features were not yet

8

available, and far fewer analysis tools were available. This
work brings a significant increase in maturity of design,
implementation, and results.

The closest external artifact that we are aware of comes
from Allison et al. [13]. Their “File Observatory” emphasizes
use of ElasticSearch capabilities to catalogue and search a
large corpus of PDF documents. This allows for better search
results at scale on supported queries, but is limited to the
queries supported by ElasticSearch, precluding results like
those presented in Section IV-D. Additionally, the FAW in-
troduces many features aimed at supporting parser developers
in rapidly developing and assessing the impacts of changes to
their parsers, including the on-the-fly recomputation of data
requiring updates and the CI pipeline (Section IV-H).

VI. FUTURE WORK

One of the key successes of the FAW has been its developer-
friendly orientation. To that end, we envision continuing to
add features which encourage specifically parser developers
to use the FAW as part of their development workflow. For
example, most of the auto-reload features currently provided
rely on watching for changes within the FAW distribution’s
source code. In contrast, many parsers live in their own
repositories. Therefore, we want to add additional pseudo-
docker commands to the FAW’s configs that allow for, e.g., the
auto-building and integration of built artifacts from external
code sources, automatically bumping parser versions when
changes are detected. This would reduce the barrier to entry
for new users.

Improvements to the statistical methods used for root
cause analysis are imagined. The current framework excels
at IMPLIES relationships between two features; however,
sometimes one error might be implied by a combination of
multiple features. Taking this idea further, we wish to explore
partitioning of errors – that is, when a logical OR relationship
comes together to cause some overarching effect. The idea
of a partition might further be inverted to automatically find
groups of features that themselves imply distinct sets of errors
– for example, it would be of interest to find that a specific
format version were responsible for many errors.

Finally, the grammar inference capabilities integrated with
the FAW need to continue to be improved. While initial results
are promising, the integration of, e.g., automatic grammar
extraction and anomaly detection techniques [14] would allow
for additional features which help pinpoint root causes and
better understand parser/input interactions.

VII. CONCLUSION

This work has introduced the FAW, an open-source, ex-
tensible tool for studying a wide array of parser/input in-
teractions. It was designed to be developer friendly, while
also empowering non-developer users to analyze error mes-
sages and parser differentials to better understand program
behaviors. The system allows for offline, horizontally scaled
processing of files. We were able to use this to achieve 0%
false positives, and only 0.5% false negatives against a gold

standard from the SafeDocs program. Creating a new format
distribution only took 10 minutes, and we were able to use
that distribution to trace root causes for some error messages.
Additionally, the FAW demonstrated easy integration of both
multi-format parsers, like PolyFile, and taint trackers requiring
parser recompilation, like PolyTracker; these were used to
identify polyglots and blind spots within a corpus of more
than 1 million files. A data-driven parser, the RL-GRIT ML
algorithm, was implemented to show the FAW’s ability to cor-
relate inferred grammar snippets to error messages. The assem-
bled workbench has already proven useful for understanding
multiple file formats, and multiple ideas were presented for
continuing to improve capabilities that help analysts identify
and mitigate risks caused by the interactions between parsing
programs and their inputs.

ACKNOWLEDGMENTS

This material is based upon work supported by the Defense
Advanced Research Projects Agency (DARPA) under Contract
No. HR0011-19-C-0076. Any opinions, findings and conclu-
sions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of
the Defense Advanced Research Projects Agency (DARPA).
The authors thank Sergey Bratus and anonymous reviewers for
their feedback and advice in editing this work.

REFERENCES

[1] F. Momot, S. Bratus, S. M. Hallberg, and M. L. Patterson, “The seven
turrets of babel: A taxonomy of langsec errors and how to expunge
them,” in 2016 IEEE Cybersecurity Development (SecDev), pp. 45–52.
IEEE, 2016.

[2] T. Allison, W. Burke, V. Constantinou, E. Goh, C. Mattmann, A. Men-
sikova, P. Southam, R. Stonebraker, and V. Timmaraju, “Building a wide
reach corpus for secure parser development,” in 2020 IEEE Security and
Privacy Workshops (SPW), LangSec, pp. 318–326. IEEE, 2020.

[3] K. Ambrose, S. Huntsman, M. Robinson, and M. Yutin, “Topological
differential testing,” arXiv preprint arXiv:2003.00976, 2020.

[4] H. Brodin, E. Sultanik, and M. Surovič, “Blind spots: Automatically
detecting ignored program inputs,” 2023.

[5] W. Woods, “RL-GRIT: Reinforcement learning for grammar inference,”
in 2021 IEEE Security and Privacy Workshops (SPW), LangSec, pp.
171–183. IEEE, 2021.

[6] M. Robinson, “Looking for non-compliant documents using error mes-
sages from multiple parsers,” in 2021 IEEE Security and Privacy
Workshops (SPW), LangSec, pp. 184–193. IEEE, 2021.

[7] M. Robinson, C. Anderson, L. W. Li, and S. Huntsman, “Statistical
detection of format dialects using the weighted dowker complex,” in
2022 IEEE Security and Privacy Workshops (SPW), LangSec, pp. 98–
112. IEEE, 2022.

[8] M. Robinson, “Cosheaf representations of relations and dowker com-
plexes,” Journal of Applied and Computational Topology, vol. 6, no. 1,
pp. 27–63, 2022.

[9] K. J. Rothman, Epidemiology: an introduction. Oxford university press,
2012.

[10] G. D. Evangelidis and E. Z. Psarakis, “Parametric image alignment using
enhanced correlation coefficient maximization,” IEEE transactions on
pattern analysis and machine intelligence, vol. 30, no. 10, pp. 1858–
1865, 2008.

[11] C. Harmon, B. Larsen, and E. Sultanik, “Toward automated grammar
extraction via semantic labeling of parser implementations,” in Proceed-
ings of the Sixth Workshop on Language-Theoretic Security (LangSec).
IEEE Symposium on Security and Privacy, 2021.

9

[12] S. Cowger, Y. Lee, N. Schimanski, M. Tullsen, W. Woods, R. Jones,
E. Davis, W. Harris, T. Brunson, C. Harmon et al., “Icarus: Understand-
ing de facto formats by way of feathers and wax,” in 2020 IEEE Security
and Privacy Workshops (SPW), LangSec, pp. 327–334. IEEE, 2020.

[13] T. Allison, W. Burke, D. Graf, C. Mattmann, A. Mensikova, M. Milano,

P. Southam, and R. Stonebraker, “Progress on building a file observatory
for secure parser development,” in 2022 IEEE Security and Privacy
Workshops (SPW), LangSec, pp. 168–175. IEEE, 2022.

[14] A. Grushin and W. Woods, “Anomaly detection with neural parsers that
never reject,” in 2022 IEEE Security and Privacy Workshops (SPW),
LangSec, pp. 88–97. IEEE, 2022.

10

	Introduction
	Motivation

	Contributions
	Data model

	Results
	Capabilities
	Easy to get started
	Filtering and discrepancy analyses
	Extensible
	Creating a new distribution
	Parser plugins
	File detail plugins
	Decision / corpus-level plugins
	Pipeline plugins
	Transforming inputs and universal output parsers

	Root cause analyses
	Rendering differentials
	PolyFile / PolyTracker integration
	Grammar inference / pipeline plugins
	Developer-friendly features for rapid parser development
	Continuously integrated reports

	Related work
	Future work
	Conclusion
	References

