
LANGSEC 2023 1

DISV: Domain Independent Semantic Validation of Data Files

Ashish Kumar1, Bill Harris2, and Gang Tan1

1Penn State University, State College, PA 16802, USA
2Galois, Inc., Portland, OR-97204, USA

Data format specification languages such as PDF or HTML have been used extensively for exchanging structured data over the
internet. While receivers of data files (e.g., PDF viewers or web browsers) perform syntax validation of files, validating deep semantic
properties has not been systematically explored in practice. However, data files that violate semantic properties may cause unintended
effects on receivers, such as causing them to crash or creating security breaches, as recent attacks showed. We present our tool DISV
(Domain Independent Semantic Validator). It includes a declarative specification language for users to specify semantic properties
of a data format. It also includes a validator that takes a data file together with a property specification and checks if the file
follows the specification. We demonstrate a rich variety of properties that can be verified by our tool using eight case studies over
three data formats. We also demonstrate that our tool can be used to detect advanced attacks on PDF documents.

Index Terms—Semantic Property Validation, Attribute Grammars, PDF Attacks.

I. INTRODUCTION

Data format specification languages such as PDF or HTML
have long been used for exchanging structured data between
data producers and receivers. While data receivers typically
perform syntactic validation on data files according to format
specifications, semantic properties on data files are seldom
validated even though many of these properties are also
described in format specifications and data files violating those
properties can cause unintended consequences.

For example, in an SVG (Scalable Vector Graphics) file, there
are a set of objects with the use tag and a set of objects with
the symbol tag. Through an href link, an object with the
use tag can refer to a second object with either the use or the
symbol tag. With the link, the attributes of the second object
are inlined into the first object, when it is rendered. If we define
a graph in which nodes are objects with use or symbol tags
and links are references between objects using href links,
one semantic property from the SVG specification [1] requires
that the graph must be acyclic. This property is called no
use-use circularity. If this property does not hold for an SVG
file, it may cause an SVG data receiver to crash or enter an
infinite recursion. Unfortunately, this property is not verified
by an SVG data receiver. Examples of such semantic properties
abound in data formats including PDF and HTML; Section VI
presents a set of case studies. In the recent past, the lack of
validation of such semantic properties led to attacks on PDF
documents [2], [3], [4], [5].

Compared to syntactic validation, validating semantic prop-
erties is more challenging, as semantic properties are often
global properties. For instance, validating the property of no
use-use circularity requires going through all objects in
an SVG file and checking the global property of no cycles.
A general framework for validating such semantic properties
must include an expressive language for declaring these prop-
erties and a tool for automatically validating an input data file
according to a specification.

We present DISV (Domain Independent Semantic Validator)

for validating semantic properties on data files. DISV can
validate semantic properties of any data format, with the
assumption that a data file of the format encodes a set of
objects. Each object is assumed to have a set of fields, some
of which are links to other objects. There can be different kinds
of links. For example, in an HTML file, an object represents
information in an HTML tag and objects can refer to other
objects using href fields. This kind of references are semantic
links across objects in an HTML file. It can also have another
kind of links, namely syntactic links between objects; i.e. if the
tag represented by object A is nested within the tag represented
by object B, then A is linked to B by a parent-child link.

With the aforementioned assumption on data formats, DISV is
designed to have two major components. The first component
is a declarative language for specifying semantic properties.
A specification file in this language is comprised of (1) a
graph specification, which specifies what objects and links
from the input file constitute a graph on which semantic
properties should be checked, (2) a set of semantic definitions
that associate attributes to graph nodes or introduce auxiliary
concepts, and (3) a set of semantic properties for validation.
The second component of DISV takes an input data file and
a property specification file, and performs automated property
validation on the input data file.

We have performed experimental evaluation of DISV using
eight semantic properties across three different file formats
(namely PDF, HTML and SVG). We evaluated DISV’s effec-
tiveness and also its performance for each of these semantic
properties. From our evaluation, we conclude that the execu-
tion time of DISV is majorly dependent on the size of the
graph specification, and a more precise graph specification
leads to a much faster execution time.

II. RELATED WORK

There have been a few previous efforts at semantic property
validation of the PDF format. Li et al. [6] developed a
language-theoretic approach to PDF parsing and semantic

LANGSEC 2023 2

property validation using ACL2 by defining a new language
to define PDF documents. Similar approaches to identifying
sementic bugs have been proposed before [7]. Wyatt [8]
derived a machine-readable definition of formally defined PDF
objects and data integrity relationships called the Arlington
PDF Model. There have been several attempts to derive
machine-readable definitions of the PDF format in the past.
Adobe Dictionary Validation Agent is a machine-readable
definition that covers the PDF object model and content
streams and itself uses custom PDF extensions [9]. Other
attempts to derive machine-readable definitions of the PDF
format include the veraPDF model [10], [11] and Levigo’s
DSL framework [12]. However all the above approaches are
specific to PDF documents, and allow for a restricted set of
properties to be specified. DISV is domain-independent and
validates first order properties in the logic of graphs.

Other formats like HTML5 have constraint validation forms
included in their receivers [13]. However, such forms can
validate only a restricted set of semantic properties, such as
restricting the range of values allowed by certain input fields.
There have been quite a few tools designed for semantic prop-
erty validation in IoT [14], [15], [16]. Kolozali et al. described
an ontology validation tool designed for W3C SSN [17]. It can
be used for validating ontologies in IoT and collect statistics
regarding the most commonly used terms in an ontology;
however, it cannot be used to check universal or existential
quantified properties, as DISV can.

In the past, new frameworks for specifying and validating
graph-based properties have also been designed. For example,
Navarro et al. [18] defined a logic for defining properties of
graphs called Graph Navigational Logic (GNL), and gave
an algorithm that validates GNL properties, using a tableau
construction. However GNL is quite restrictive in the prop-
erties that it can specify - a property in GNL for the edge-
labelled graph G has the format (upto type of quantifier)
∀H ⊆ G ⇒ ∃H ′, H ′ ⊆ G where H and H ′ are specific
edge-labelled graphs specified by the property. GNL doesn’t
allow us to reason about values assigned to nodes or treat
nodes as a collection of values like in an attribute grammar or
in first order logics of graphs.

Our attribute-based semantic definitions are inspired by at-
tribute grammars [19], [20], [21]. Attribute grammars have
been demonstrated for validating a wide variety of properties
of context free grammars including type checking, type infer-
ence, code generation, optimizing database query operations,
etc [22], [23]. Silver [24] is an attribute grammar specifi-
cation system designed for validating highly modular attribute
grammars. When compared to DISV, Silver can be used
to specify the attribute-based properties but not the properties
based on the first order logics of graphs.

We demonstrate another use of DISV—to check for attacks
on PDF Documents. We use DISV to validate whether a PDF
document can suffer from a faulty permissions attack [5].
In the past, several attacks on PDF documents have been
proposed [2], [3], [4], [5], and tools for checking the same
have been developed.

Fig. 1: Internal Architecture of DISV.

III. SYSTEM ARCHITECTURE OF DISV

The internal architecture of DISV is shown in Fig. 1. First, the
front-end of DISV transforms an input file into an Intermediate
Representation (IR), represented as a JSON file. We have built
the front ends for a number of file formats, including HTML
and SVG. For PDF, a PDF parser generated from a definition
in DaeDaLus (a format definition language that can express
data-dependent grammars) and convert parse results to our IR.
More front ends can be incorporated for other data formats.

Recall that we assume the input data file encodes a set of
objects. In our JSON IR file, an object is stored as a dictionary
(i.e., a key-value store) that maps from object fields to field
values. Each object is also given a unique ID. The field value
of an object can be the ID of another object, which is how
links between objects are encoded.

DISV takes as input the IR (JSON file) and a semantic property
specification as a human-understandable, external specifica-
tion. It first converts the external specification to an internal
form, which it then uses along with the IR to store in memory
all objects. As an optimization, DISV only stores those objects
whose keys occur in the internal specification. Using this list of
objects and the internal specification, DISV constructs a graph
that represents the given document’s relevant components. It
then validates the graph regarding the properties declared in
the input property specification.

IV. SPECIFICATION LANGUAGE

In this section, we define DISV’s specification language. We
start with an example property that will be used to illustrate
the main features of the specification language.

A. An illustrative example

We illustrate our framework by example on the page-tree
inheritance property of PDF documents. Further background
information on the PDF format is given in Appendix A. A PDF
file may contain a set of objects that, together, form a so-called
page tree [25]; an example page tree is depicted in Fig. 2. The
page tree’s leaves are Page objects; its internal nodes are
Pages objects; each Pages node stores common metadata
for all leaf Page objects of the subtree rooted with the node.

LANGSEC 2023 3

Fig. 2: An example page tree.

The page tree’s edges are represented by object references
(called indirect objects) that are stored in internal nodes; its
root is identified in a distinguished Catalog object. We use
term page-tree objects to refer to both Page and Pages
objects.

A page-tree object has a set of key-value pairs, and keys may
be designated in the PDF specification as possibly “Required”
and/or “Inheritable”. A key designated as “Required” but not
“Inheritable” for an object must have a value in that page-
tree object. A key marked as “Required” and “Inheritable”
must either be defined by the page-tree object or one of its
ancestors in the page tree. By the PDF specification, two
keys, Resources and MediaBox, are designated as both
“Required” and “Inheritable”. These conditions on objects and
keys, combined, constitute the page-tree inheritance property.

B. Specification Grammar

We now explain our specification language by presenting
the general constructs and illustrating how they are used to
formalize the page-tree inheritance property in DISV (Fig. 3).
The top-level specification grammar for DISV is defined
below. It first requires the specification of a graph structure
followed by a specification of a set of semantic definitions
and properties.

〈Spec Grammar〉 ::= 〈Graph Spec〉〈Semantic Definition Spec〉
〈Semantic Property Spec〉

Graph Specification A graph specification in DISV specifies
a graph structure based on the set of objects and their fields
in the input IR file. Note that the specified structure may
contain only a subset of all objects and fields in the input file.
Further, DISV allows specialized graph structures, including
trees, ordered trees, and forests.

〈Graph Spec〉 ::= 〈Tree〉 | 〈Ordered Tree〉
| 〈Forest〉 | 〈Graph〉

The specification of a tree is comprised of the keyword
”Tree” followed by a specification of the root node (using
nonterminal ‘Source Def’ below), and a specification of how
to identify children from nodes (using nonterminal ‘Recur-
sive Child Def’). In the grammar given below, ‘Source Def’

1 Tree:
2 Root is unique d satisfying d.<"Id">
3 = d1.<"Pages"> where unique d1 satisfies
4 d1.<"Type"> = "Catalog".
5

6 forall d in Tree, d0 is Child(d) where
7 d0.<"Id"> in d.<"Kids"> and d0.<"Type">
8 in ["Page", "Pages"].
9

10 Semantic Definitions:
11 forall d in Root, d.<is_Resources_defined>
12 = iskeydefined(d, "Resources").
13

14 forall d in Root, d.<is_MediaBox_defined> =
15 iskeydefined(d, "MediaBox").
16

17 forall d1 in Tree, forall d2 in Child(d1),
18 d2.<is_Resources_defined> =
19 d1.<is_Resources_defined> or
20 iskeydefined(d2, "Resources").
21

22 forall d1 in Tree, forall d2 in Child(d1),
23 d2.<is_MediaBox_defined> =
24 d1.<is_MediaBox_defined> or
25 iskeydefined(d2, "MediaBox").
26

27 Semantic Property:
28 forall d in Leaves, d.<is_Resources_defined>
29 = True.
30

31 forall d in Leaves, d.<is_MediaBox_defined>
32 = True.

Fig. 3: The page-tree inheritance property, expressed in DISV.

and ‘Recursive Child Def’ are nonterminals parameterized
with strings ”Root” and ”Tree” respectively.

〈Tree〉 ::= Tree : 〈Source Def (Root)〉
〈Recursive Child Def (Tree)〉

The grammar for ‘Source Def’ is parameterized by a variable
x, which is ‘Root’ or ‘Source’ depending on whether the graph
is a tree or not. It defines a set of objects using a proposition.
Since our IR represents objects by dictionaries, the proposition
applies to the key-value pairs in dictionaries. The list of
propositions that DISV allows is defined in Appendix C. The
keyword “unique” is used if a single object is expected to
satisfy the required property.

〈Source Def(x)〉 ::= x is (unique)? 〈d0〉 satisfying
〈getGraph Prop

(
〈di〉ki=0

)
〉

where (unique)? 〈d1〉 satisfies
〈getGraph Prop

(
〈di〉ki=1

)
〉

. . .

where (unique)? 〈dk〉 satisfies
〈getGraph Prop〉(〈dk〉).

As an examples, lines 2–3 in Fig 3 specifies the root of the
page tree. It says that the root is a unique object whose ‘Id’
equals the value of the ‘Page’ entry in the unique Catalog
object.

As mentioned earlier, nonterminal ‘Recursive Child Def’ is
for specifying the children of nodes in the graph structure.
It is parameterized by a variable x, which is either ‘Tree’,
‘Forest’, ‘Graph’, or ‘Ordered Tree’. For each object d in x,

LANGSEC 2023 4

it recursively defines the child objects of d using a predicate
on both the parent and child objects.

〈Recursive Child Def(x)〉 ::= forall 〈d〉 in x, 〈d1〉 is Child(〈d〉)
where 〈getGraph Prop〉(〈d〉,〈d1〉).

Lines 5–6 in Fig 3 defines child objects in a page tree. It says
that in the tree being defined, d0 is a child of d if the ‘Id’
value of d0 is present in the ‘Kids’ array of d and d0’s ‘Type’
is either ‘Page’ or ‘Pages’.

The specification for an ordered tree is similar to that of
a tree, with the difference that the recursive child property
also assigns a number (order) to the children of an object.
Nonterminal ‘getGraph Index’ is defined in Appendix C.

〈Ordered Tree〉 ::= Ordered Tree: 〈Source Def〉(Root)

〈Ordered Recursive Child Def〉

〈Ordered Recursive Child Def〉 ::= forall 〈d〉 in Ordered Tree,

〈d1〉 is ith Child(〈d〉)
where〈getGraph Prop〉(〈d〉,〈d1〉).
where i is 〈getGraph Index〉(〈d〉).

The specification of a forest and a general graph is given
below. They are similar in that they both allow one or more
source and recursive child definitions, with the difference
being that DISV checks that a forest is acyclic, whereas cycles
are allowed in general graphs.

〈Forest〉 ::= Forest :〈Source Def (Root)〉+〈Recursive Child Def (Forest)〉+

〈Graph〉 ::= Graph :〈Source Def (Source)〉+〈Recursive Child Def (Graph)〉+

Semantic Definition Specification Semantic definitions in
DISV introduce additional concepts on top of the graph
structure and are used in defining semantic properties. The
semantic definition section starts with the string “Semantic
Definitions:”, followed by one or more semantic definitions.

〈Semantic Definition Spec〉 ::= Semantic Definitions : 〈Semantic Def〉+

A semantic definition can be either an attribute or a quantifier-
set definition:

〈Semantic Def〉 ::=
(
〈 Attribute Def〉 | 〈Quantifier Set Defs〉

)+

The notion of attributes is inspired by attribute grammars [19],
[20]. In an attribute grammar, attributes are associated with
nonterminals of the grammar; how attributes are computed
is also specified in the grammar. Depending on the order of
attribution computation, there are different kinds of attributes.
Synthesized attributes are computed in a bottom-up fashion:
the value of a synthesized attribute of a parent node in a
parse tree is computed based on the attribute values of the
child nodes. Inherited attributes are computed in a top-down
fashion: the value of an inherited attribute of a child node is
computed based on the attribute values of the parent node.
The grammar for defining an attribute in DISV is given below.
An attribute ‘attr name’ for object dk is defined as a function

of the key-value pairs of objects d1 to dk−1. These objects
belong to a set of objects, which is defined using the (variadic)
nonterminal Attr Set (that may or may not be parameterized
by pre-defined objects). The nonterminals Attr Set, attr name
and Attr fun are defined in Appendix C.

〈Attr Def〉 ::= forall 〈d1〉 in 〈Attr Set〉
, . . . ,

forall 〈dk〉 in 〈Attr Set(〈d1〉, ... 〈dk-1〉)〉,
〈dk〉.〈attr name〉=〈Attr fun〉(〈d1〉, 〈d2〉, ... 〈dk-1〉).

An example attribute definition is given in lines 9–19 of
Fig 3. They introduce two boolean attributes for each page-tree
object: ‘is Resources defined’ and ‘is MediaBox defined’.
Attribute ‘is Resources defined’ is true for an object if key
‘Resources’ is defined either directly in the object or in one of
its ancestors; attribute ‘is MediaBox defined’ works similarly.
Note that DISV allows defining attributes for only acyclic
graphs (trees and forests). Also, DISV allows the specification
of both inherited and synthesized attributes, as the quantifier
set (Attr Set) for specifying attributes can be either the set of
all children, the parent, or even all of the nodes in the tree as
discussed in Appendix C.

The second kind of semantic definitions is called quantifier
sets. A quantifier-set introduces a set of nodes or edges from
the graph. Once defined, a quantifier set can be quantified over
when defining semantic properties.

〈Quantifier Set Defs〉 ::= 〈Quantifier Node Set〉 | 〈Quantifier Edge Set〉

The specification for a set of nodes is given below. The set of
nodes (objects) is defined by a Boolean proposition over the
key-value entries of an object. The nonterminal ‘Graph Prop’
is defined in Appendix C.

〈Quantifier Node Set〉 ::= 〈Node name〉 is 〈d〉 satisfying 〈Graph Prop〉(〈d〉).

An example of a quantifier set definition over a set of
nodes is given at line 8 of Fig 4, copied here: Head is
d satisfying d.<"Name"> = "head". It defines a
quantifier set named ‘Head’, which contains a set of nodes
whose ‘Name’ value is ‘head’. With the definition of this
quantifier set, a later semantic property quantifies over all
nodes in ‘Head’ at lines 14–15 of Fig 4.

The specification for a set of edges is given below. An edge
is written as a pair of objects, and each object is defined by a
Boolean proposition over the key-value entries of the object.
Nonterminal ‘Graph Edge Set’ is defined in Appendix C.

〈Quantifier Edge Set〉 ::= 〈Edge name〉 is (〈d1〉,〈d2〉)
satisfying 〈Graph Prop〉(〈d1〉,〈d2〉)
where 〈d1〉 in 〈Graph Edge Set〉
where 〈d2〉 in 〈Graph Edge Set〉.

An example of a quantifier set definition over a set of edges
is given at lines 10-11 of Fig 4, copied below:

Ref is (d1, d2) satisfying d1.<"href"> =
REFSTRING(d2.<"id">) where d1 in [Tree]
where d2 in [Tree] .

It defines a set of edges labelled ‘Ref’ where (d1,d2) is an
edge in ‘Ref’ if d1’s ‘href’ value equals ”#” plus d2’s ‘id’
value.

LANGSEC 2023 5

Semantic Property Specification It comprises of the string
”Semantic Property:” followed by one or more semantic
properties.

〈Semantic Property Spec〉 ::= Semantic Property: 〈Semantic Property〉+

The grammar for a semantic property is given below. It starts
with zero or more quantifiers over nodes or edges, followed
by a predicate. The symbol o below is used to denote either
a node or an edge (represented by a pair of nodes).

〈Semantic Property〉 ::= 〈Quantifier〉(o, []) . . .
〈Quantifier〉(o k, [o, o 1, ...o k − 1])

〈Sem Prop Prop〉(〈d1〉, 〈d2〉, ... 〈dk〉).

The grammar for quantifiers is given below. A quantifier can
quantify over either nodes or edges. Also the quantifier set for
the i-th quantifier can use quantified objects defined by the
previous quantifiers.
〈Quantifier(o ,[〈d1〉, 〈d2〉, ... 〈dk〉])〉 ::= forall 〈d〉 in

〈Sem Prop Set(〈d1〉, 〈d2〉, ... 〈dk〉)〉,
| forall

(
〈d〉, 〈d’〉

)
in

〈Sem Prop Set(〈d1〉, 〈d2〉, ... 〈dk〉)〉,

An example of the page-tree inheritance property is
given in lines 22–24 of Fig 3. It checks if attributes
‘is Resources Defined’ and ‘is MedixBox Defined’ hold for
all leaf nodes in the page tree.

Note that the specification logic of DISV is mostly the first
order logic of graphs and it allows for both universal and
existential quantification. However, it additionally allows for
quantifying over a ‘PATH(src, set edges)’ predicate, which
represents the set of nodes reachable from ‘src’ using edges
from ‘set edges’. This allows us to specify graph properties
such as connectivity, which ordinarily are not specifiable by a
first order graph logic.

V. PROPERTY VALIDATION

The property validation algorithm of DISV is given in Algo-
rithm 1. It takes as input the property specification file and the
data file (IR), and outputs a detailed log information about
whether the properties in the specification are satisfied; if a
property is not satisfied, it also outputs where it is violated in
the input data.

The validation first finds all keys used in the user speci-
fication with GET KEYS. It then stores all objects in the
data file using READ OBJECTS. It only stores those key-
value pairs in a dictionary whose keys were found by the
earlier GET KEYS step. DISV then finds the graph type (i.e.
tree, graph, forest or ordered tree) and stores this information
separately. It then constructs the graph using GET GRAPH
and also validates the graph type. DISV then repeatedly reads
and computes semantic definitions, and then reads and verifies
semantic properties. We next describe the major components
of validation in more detail.

GET GRAPH. This function takes the user specification and
the graph type, computes the graph, verifies if its structure
matches the graph type, and outputs a detailed log of infor-
mation pertaining to the graph structure. When computing
the graph, it first finds a set of source nodes using the
specification. Then for each node in the graph, the algorithm
goes through all objects to find the node’s children, according

Algorithm 1: DISV ALGORITHM
Input: User spec file.txt , Data file.txt
Output: Output.log

1 Keys ← GET KEYS(User spec file.txt)
2 objects ← READ OBJECTS(Data file.txt, Keys)
3 Graph Type ← GET GRAPH TYPE(User spec file.txt)
4 Graph ← GET GRAPH(User spec file.txt, Graph Type)
5 READ(User spec file.txt, ”Semantic Definitions:”)
6 while ! READ(User spec file.txt, ”Semantic Property:”)

do
7 Semantic Def

←READ DEFINITION(User spec file.txt)
8 if IS ATTRIBUTE(Semantic Def) then
9 COMPUTE ATTRIBUTE(Graph, Semantic Def, Graph Type)

10 else
11 COMPUTE QUANTIFIER SET(Graph, Semantic Def)

12 while ! EOF(User spec file.txt) do
13 Semantic Prop ←

READ DEFINITION(User spec file.txt)
14 VERIFY PROPERTY(Semantic Prop, φ)

to the specification. This component of DISV works in O(nD)
time, where D is the total number of objects in the input file
and n is the number of nodes in the graph defined in the user
specification.

COMPUTE ATTRIBUTE. This function computes the at-
tributes specified by users. DISV allows for defining both
inherited and synthesized attributes, and we associate attributes
with the nodes of the graph computed early. Our validator
assumes that attributes defined by users are well defined (a
similar requirement is there in attribute grammars), which
means that, if we construct a dependence graph between
attributes, the graph has a topological order. This implies that
attribute values can be computed using previously defined
attributes, following the topological order. Assuming there is a
O(n) number of attributes, where n is the number of nodes in
the graph, this component of DISV works in O(n) time, since
it follows the topological order to compute attribute values.

COMPUTE QUANTIFIER SET. This function computes the
required quantifier sets of nodes or edges. It goes through
each object in the graph against the property stated to find
the quantifier set. A quantifier set may use previously defined
quantifier sets - thus the order of specifying quantifier sets by
user must be topologically sorted w.r.t to their dependencies.
The specification for quantifier nodes sets allows universal
quantifiers using the ‘where’ keyword, wheras the specifica-
tion for quantifier edge sets is essentially a double universal
quantification over nodes. This component of DISV works in
O(nq+n2) time, where n is the number of nodes in the graph
and q is the node quantifier depth, as for each quantifier we
make a single pass over the quantifier set, which has size O(n).

VERIFY PROPERTY. This function validates a user defined
semantic property and outputs the result of validation. We

LANGSEC 2023 6

describe the algorithm for validating semantic properties in
Algorithm 2. DISV uses a map between object names to
values called ‘Quantifier Map’ to track the value of variables
in a quantified property. DISV first checks if a property
is a zeroth order property (i.e. it has no quantifiers), and
if so it computes its (boolean) truth value by calling the
VERIFY PROPOSITIONAL PROPERTY subroutine. If not,
it extracts the top-level quantifier, computes its corresponding
quantifier set and type and for each node or edge in the
quantifier set, it recursively calls VERIFY PROPERTY. DISV
stores the truth value for the computation in the variable
‘Truth Value’. The quantifier map is restored to its earlier
value at the end of each loop iteration, as it is passed by
value during recursive calls.

Algorithm 2: VERIFY PROPERTY ALGORITHM
Input: Semantic Prop, Quantifier Map
Output: Truth Value

1 if IS ZEROTH ORDER PROPERTY(Semantic Prop)
then

2 Truth Value ←
3 VERIFY PROPOSITIONAL PROPERTY(Semantic Prop,

Quantifier Map)
4 return Truth Value

5 (Quantifier, Remaining Property)
6 ← EXTRACT TOP QUANTIFIER (Semantic Prop)
7 Quantifier Name←

GET QUANTIFIER NAME(Quantifier)
8 Quantifier Set ← GET QUANTIFIER SET (Quantifier)
9 Quantifier Type ← GET QUANTIFIER TYPE

(Quantifier)
10 if IS UNIVERSAL QUANTIFIER (Quantifier Type) then
11 Truth Value ← True; 〈operator〉 ← ∧
12 else
13 Truth Value ← False; 〈operator〉 ← ∨
14 if IS NODE SET(Quantifier Set) then
15 for n ∈ Quantifier Set do
16 Truth Value ← Truth Value 〈operator〉
17 VERIFY PROPERTY (Remaining Property,
18 Quantifier Map ∪ [(Quantifier Name, n)])

19 else
20 for (n1,n2) ∈ Quantifier Set do
21 Truth Value ← Truth Value 〈operator〉
22 VERIFY PROPERTY (Remaining Property,
23 Quantifier Map ∪ [(Quantifier Name.first,

n1); (Quantifier Name.second, n2)])

24 return Truth Value

This component’s time complexity in O(nq + eq), where n is
the number of nodes, e the number of edges in the graph, and
q is the quantifier depth. We note that the time complexity for
this component is near-optimal, as the best known algorithm
to verify a first-order graph property (which quantifies over
only node sets) with at least 3 quantifiers has time complexity
Õ(nq−0.63) [26], [27].

Property Name Graph
Type

Semantic Defini-
tion Type

Quantifier
Type

PDF page-tree inheritance Tree Inherited
Attributes

Universal

PDF faulty permissions
attack

Graph Node Quantifiers
+ Edge Quanti-
fiers

Universal

HTML head element ref-
erenced at most once

Tree Node Quantifiers
+ Edge Quanti-
fiers

Universal

HTML unique refstrings Tree Synthesized At-
tributes

Universal

HTML nesting order of ta-
ble elements

Tree Node Quantifiers Universal
+ Exis-
tential

HTML paragraphs cannot
be nested

Forest – Universal

SVG ‘Title’ is first child Ordered
Tree

Node Quantifers Universal

SVG references in ‘defs’ Tree Edge Quantifiers Universal
SVG no use-use circular-
ity

Tree Node Quantifiers
+ Edge Quanti-
fiers

Universal

TABLE I: Summary of Properties Validated.

VI. CASE STUDIES

We demonstrate the use of our tool on 9 case studies across
3 file formats: PDF, HTML and SVG. We summarize the
type of properties specified by each property in Table I. We
already presented a detailed description of the PDF page-tree
inheritance property earlier. We now give the specifications for
3 other case studies and the rest are mentioned in Appendix
C.

HTML Head Elements Referenced at most once HTML
files consist of start and end tags of elements that are nested
within each other. We consider an HTML file to have a tree
structure where an element is a child of another element if
the child element’s start and end tags are nested within the
start and end tags of the parent element. The root of this tree
is the ‘html’ element, which has two children: ‘head’ and
‘body’. Often start tags have attributes that can be treated
as key-value pairs. In HTML files, element A references
element B if A’s href attribute value equals B’s id attribute
value (called a refstring) pre-pended with a ‘#’ symbol. The
HTML Specification [28] recommends that all descendants of
the ‘head’ element should be referenced at most once. This
property is specified in Fig 4.

SVG ‘Title’ is First Child An ordered tree is defined here.
The tree structure is the same as before, but the order on the
children of an element is defined by the position of their ‘Id’
value in their ‘Kids’ entry of their parent element. Given this
order on the children, the SVG specification [1] recommends
that the ‘Title’ element is the first child of its parent. This
property is checked by the specification in Fig 5.

DISV for PDF Attack Detection We briefly describe the
Faulty Permission Attack [2] and give a specification to show
how DISV can be used to detect whether a PDF file can be
subject to such an attack.

We first define certified PDFs. A certified PDF defines permis-
sions that allow certain changes to the file. Certifiers choose

LANGSEC 2023 7

1 Tree:
2 Root is unique d satisfying d.<"Name">
3 = "html".
4

5 forall d in Tree, d0 is Child(d) where
6 d0.<"Id"> in d.<"Kids"> and d0.<"Name">
7 != "html".
8

9 Semantic Definitions:
10 Head is d satisfying d.<"Name"> = "head".
11

12 Ref is (d1, d2) satisfying d1.<"href">
13 = REFSTRING(d2.<"id">)
14 where d1 in [Tree] where d2 in [Tree].
15

16 Semantic Property:
17 forall d1 in Head, forall (d2, d3) in Ref,
18 forall (d4, d5) in Ref,
19 (d3 = d5 and d3.<"Id"> in
20 PATH(d1.<"Id">,Tree)) implies d2 = d4.

Fig. 4: Head Element Referenced Atmost Once

1 Ordered Tree:
2 Root is unique d satisfying d.<"Name"> =
3 "svg".
4

5 forall d in Ordered Tree, d0 is ith Child(d)
6 where d0.<"Id"> in d.<"Kids"> and
7 d0.<"Name"> != "svg" where i is
8 indexn (d0, d.<"Kids">).
9

10 Semantic Definitions:
11 Title is d satisfying d.<"Name"> = "Title".
12

13 Semantic Property:
14

15 forall d in Title,
16 ochild_field(parent_field(d,<"Id">)
17 ,1,<"Id">)=d.<"Id">.

Fig. 5: ‘Title’ is First Child Property.

between 3 different permission levels to allow incremental
updates, with P1 being stricter than P2, which is in turn stricter
than P3. A PDF document can have at most one certification.

• P1: No modifications allowed.
• P2: Filling out form fields and digitally signing the

document are the only modifications allowed.
• P3: All incremental updates are allowed.

Faulty Permissions Attack. If an attacker forces a disallowed
modification to a certified document, the certification breaks.
Recent studies [2] on certain PDF readers demonstrated attacks
that allowed modifying a certified PDF file with changes not
within the permission level, and avoided detection by those
PDF readers. This can happen if annotations are added to PDF
documents with a permission level stricter than P3 or if forms
are modified in PDF documents with a permission level stricter
than P2.

In a PDF file with a permission level stricter than P3 (i.e., P1
and P2), no annotations should be allowed after the PDF file
has been certified, whereas in a PDF file with a permission

1 Graph:
2 Source is d satisfying True.
3

4 forall d in Tree, d0 is Child(d) where False.
5

6 Semantic Definition:
7 XRef is d satisfying d.<"Type"> = "XRef".
8

9 Certificate is d satisfying
10 iskeydefined(d,<"Reference.0 .
11 TransformParams.P">).
12

13 XRef_Certificate is d satisfying
14 d.<"Type">="XRef" and (d1>d2
15 implies d1>=d) where d1 in [XRef]
16 where d2 in [Certificate].
17

18 Digital_Form is d satisfying
19 d.<"header.Subtype"> = "Form" and
20 d.<"header.Type"> = "XObject".
21

22 Annotation is d satisfying
23 d.<"Type"> = "Annot".
24

25 Semantic Property:
26 forall d1 in XRef_Certificate,
27 forall d2 in Annotation,
28 forall d3 in Certificate,
29 d3.<"Reference.0 .
30 TransformParams.P"> < 3
31 implies d2 < d1.
32

33 forall d1 in XRef_Certificate,
34 forall d2 in Digital_Form,
35 forall d3 in Certificate,
36 d3.<"Reference.0 .
37 TransformParams.P"> < 2
38 implies d2 < d1.

Fig. 6: Specification of a property for preventing faulty per-
mission Level attacks (The graph contains all objects in the
input file and no edges are needed for this property).

level stricter than P2 (i.e., P1), additionally no form fields
are allowed after the PDF file has been certified. To ensure
that there are no annotations or form fields after certification,
we need to check if there are any annotations or form fields
in the incremental update sections after the document has
been certified. This property is specified in Fig 6. To do
this, we first locate the XRef section of the original certified
document labelled ‘XRef Certificate’. We then check that all
incremental updates after this XRef section are within the set
of changed allowed by the file’s certification level. Note that
the certification level of a PDF document is stored in the ‘P’
(permissions) attribute of the TransformParams object.

VII. IMPLEMENTATION AND PERFORMANCE EVALUATION

We implemented DISV in C++. The implementation has about
4,600 LOC, with finding the graph structure taking 1K LOC
and verifying the property taking 2K LOC.

A. Performance evaluation

We present the time vs input size plots for validating the
semantic property for the case studies discussed in Section VI

LANGSEC 2023 8

and the remaining performance plots are in Appendix C. For
the page-tree inheritance property, the numbers of nodes and
edges are much smaller than the number of objects in the input
file (n, e << D), and our observed time complexity is linear
in D. In the property of HTML head elements referenced
at most once, we have n ∼ D, and we observe quadratic
behavior in D, whereas the SVG-Ordered Spec shows linear
behaviour w.r.t. D; the file size of 350kB is an outlier as
it has very few objects in the user defined nodes. This is
consistent with our knowledge that the running time of DISV
is O(s+nD+nq+eq), where s is the size of the specification
file, D is the total number of objects in the input file, n and e
are the numbers of nodes and edges in the graph respectively,
and q is the quantifier depth in the specification file.

We also conducted additional experiments to compare the
running time of graph construction and the running time of
semantic property checking for the property of HTML nesting
order of table elements. We plot the results in Fig 8(a). From
this, we infer that the majority of the execution time for DISV
lies in searching for the graph structure.

We note that as graph construction contributes to the bulk of
the execution time for DISV, a more precise definition of an
input graph would result in a much smaller running time. We
depict this for the HTML-paragraph-cannot-nest property in
Fig 8(b). The red line is the performance for the specification
given in Fig 10, whereas the blue line is the performance for
when the get graph specification of Fig 10 is replaced with
the get graph specification in Fig 9.

VIII. FUTURE WORK

There are a few directions for future work for our work.
One direction is to extend the graph logic specification used
by DISV to allow for second order graph logic properties
(MSO1 or MSO2). Another direction would be to allow for
properties to be specified in a topologically unsorted (w.r.t
dependencies) fashion. Another direction in this project would
be to expand the database of atomic predicates that DISV
allows. A completely different direction in the field of security
would be to use DISV to detect security attacks such as EAA
and SSA attacks on PDF documents, which break the integrity
of a PDF document [2].

ACKNOWLEDGEMENT

The authors would like to thank anonymous reviewers for their
insightful comments. This work was supported by DARPA
research grant HR0011-19-C-0073.

REFERENCES

[1] W3C, “Scalable vector graphics (svg) 2,”
https://www.w3.org/TR/SVG2/, 2018.

[2] C. Mainka, V. Mladenov, and S. Rohlmann, “Shadow attacks: Hiding
and replacing content in signed pdfs,” 2021.

[3] V. Mladenov, C. Mainka, K. Meyer zu Selhausen, M. Grothe, and
J. Schwenk, “1 trillion dollar refund: How to spoof pdf signatures,”
in Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, 2019, pp. 1–14.

(a) PDF: Page Tree Inheritance

(b) HTML: Head elements referenced atmost once

(c) SVG: ‘Title’ is first child

Fig. 7: Performance plots for Specifications

[4] J. Müller, F. Ising, V. Mladenov, C. Mainka, S. Schinzel, and J. Schwenk,
“Practical decryption exfiltration: Breaking pdf encryption,” in Pro-
ceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, 2019, pp. 15–29.

[5] S. Rohlmann, V. Mladenov, C. Mainka, and J. Schwenk, “Breaking the
specification: Pdf certification.”

[6] L. W. Li, G. Eakman, E. J. Garcia, and S. Atman, “Accessible formal
methods for verified parser development.”

[7] F. Momot, S. Bratus, S. M. Hallberg, and M. L. Patterson, “The seven
turrets of babel: A taxonomy of langsec errors and how to expunge
them,” in 2016 IEEE Cybersecurity Development (SecDev). IEEE,
2016, pp. 45–52.

[8] P. Wyatt, “Work in progress: Demystifying pdf through a machine-
readable definition,” 2021.

LANGSEC 2023 9

(a) Running time breakdown for the property of for HTML nesting
order of table elements.

(b) Graph construction times for HTML-paragraph-cannot-nest prop-
erty.

Fig. 8: Performance Comparison plots

[9] L. Rosenthol, “Pdf validation,” PDF Technical Conference 2012, Basel,
Switzerland. Unpublished.

[10] “Verapdf model,” https://github.com/veraPDF/veraPDF-model.

[11] “Verapdf model syntax,” https://github.com/veraPDF/veraPDFmodel-
syntax.

[12] “Pdf runtime validation and beyond..., françois fernandès (levigo so-
lutions gmbh), pdf technical conference 2013, königswinter, germany,”
https://github.com/levigo/pdf-formal-representation.

[13] “Constraint validation api,” https://developer.mozilla.org/en-
US/docs/Web/API/Constraint validation.

[14] U. Şimşek, E. Kärle, O. Holzknecht, and D. Fensel, “Domain specific
semantic validation of schema. org annotations,” in International Andrei
Ershov Memorial Conference on Perspectives of System Informatics.
Springer, 2017, pp. 417–429.

[15] O. Panasiuk, E. Kärle, U. Simsek, and D. Fensel, “Defining tourism
domains for semantic annotation of web content,” arXiv preprint
arXiv:1711.03425, 2017.

[16] I. Boneva, J. E. L. Gayo, and E. G. Prud’hommeaux, “Semantics and
validation of shapes schemas for rdf,” in International Semantic Web
Conference. Springer, 2017, pp. 104–120.

[17] S. Kolozali, T. Elsaleh, and P. M. Barnaghi, “A validation tool for the
w3c ssn ontology based sensory semantic knowledge,” in Joint Proceed-
ings of the 6th International Workshop on the Foundations, Technologies
and Applications of the Geospatial Web and 7th International Workshop
on Semantic Sensor Networks, 2014, pp. 83–88.

[18] M. Navarro, F. Orejas, E. Pino, and L. Lambers, “A navigational logic
for reasoning about graph properties,” Journal of Logical and Algebraic
Methods in Programming, vol. 118, p. 100616, 2021.

[19] D. E. Knuth, “Semantics of context-free languages,” Mathematical
systems theory, vol. 2, no. 2, pp. 127–145, 1968.

[20] H. Alblas, “Introduction to attribute grammars,” in International Summer
School on Attribute Grammars, Applications, and Systems. Springer,
1991, pp. 1–15.

[21] S. Karol, “An introduction to attribute grammars,” Department of Com-
puter Science. Technische Universitat Dresden, Germany, 2006.

[22] K. Thirunarayan, “Attribute grammars and their applications,” in Ency-
clopedia of Information Science and Technology, Second Edition. IGI
Global, 2009, pp. 268–273.

[23] P. Deransart and M. Jourdan, “Attribute grammars and their applica-
tions,” Lecture Notes in Computer Science, vol. 461, 1990.

[24] E. Van Wyk, D. Bodin, J. Gao, and L. Krishnan, “Silver: An extensible
attribute grammar system,” Science of Computer Programming, vol. 75,
no. 1-2, pp. 39–54, 2010.

[25] “Document management—portable document 493 format—part 1: Pdf
1.7,” 2008.

[26] R. Williams, “Faster decision of first-order graph properties,” in Pro-
ceedings of the Joint Meeting of the Twenty-Third EACSL Annual
Conference on Computer Science Logic (CSL) and the Twenty-Ninth
Annual ACM/IEEE Symposium on Logic in Computer Science (LICS),
2014, pp. 1–6.

[27] J. Alman and V. V. Williams, “A refined laser method and faster matrix
multiplication,” in Proceedings of the 2021 ACM-SIAM Symposium on
Discrete Algorithms (SODA). SIAM, 2021, pp. 522–539.

[28] W3C, “Html 5.2,” https://www.w3.org/TR/html52/, 2021.

[29] G. Endignoux, O. Levillain, and J.-Y. Migeon, “Caradoc: A pragmatic
approach to pdf parsing and validation,” in 2016 IEEE Security and
Privacy Workshops (SPW). Ieee, 2016, pp. 126–139.

APPENDIX

We next briefly describe the structure of Portable Document
Format (PDF) [29], [25].

A. PDF File Structure

In its basic form, a PDF file has four elements:

• Header stores the PDF version number.
• Body contains an uncompressed list of indirect objects,

which are explained later.
• Xref Table stores the byte position of each object in the

file. An Xref table is a collection of xref sections, where
each xref section is a continuous list of entries that store
information about a new incremental update. We will
briefly explain incremental updates later.

• Trailer stores information about the root object of the
PDF document. It is demarcated by a End of File (EOF)
marker.

B. Basic PDF Objects

We briefly describe the basic forms of PDF objects: direct
objects, indirect objects, and streams.

Direct Objects PDF objects have a few basic object types:

• a null object is represented by the keyword ‘null’
• boolean objects are ‘true’ and ‘false’

LANGSEC 2023 10

• integers; e.g. 123, 45
• reals; e.g. -2.8 , 3.0
• strings are enclosed in parenthesis; e.g. (man)
• names are preceded by a slash; e.g. /Date
• arrays are heterogeneous collections of any of the above

objects enclosed in square brackets. For example, [/Name
(John) /Year 1975] is an array object where the first
object ‘/Name’ is a name object, the second object
‘(John)’ is a string object which is followed by another
name object ‘/Year’ and then integer 1975.

• dictionaries are collections of key-value pairs enclosed
in double angle brackets, where the key is a name object
and the value could be any direct object including another
dictionary. For example, ¡¡ /Name (John) /Date [1 1 1975]
¿¿ is a dictionary with 2-key value pairs, the first being
‘/Name (John)’ where ‘/Name’ is the key and the string
object ‘(John)’ is the value; the second being ‘/Date [1 1
1975]’ where ‘/Date’ is the key and the array object ‘[1
1 1975]’ is the value.

Indirect Objects Indirect Objects are objects enclosed be-
tween keywords ’obj’ and ’endobj’. An example indirect
object is given in lines 3–8 of Fig 12. An indirect object is
identified using two integers called the object number and the
generation number respectively. The object number is unique
for each object. The generation number is used to keep track
of updates on the object; hence a new object has 0 as its
generation number. For instance, the first object in Fig 12
has object number 1, generation number 0, and contains a
dictionary with 4 keys: /Lang, /OpenAction , /Pages, and
/Type. An indirect object is referred to by using a reference to
its object and generation numbers; for example, the example
object can be referred to as ’1 0 R’.

Stream Objects A stream object is a special kind of indirect
object and contains a byte sequence enclosed within the
keywords ‘stream’ and ‘endstream’. The object is used to store
metadata and allows to use compression filters. An example
stream object is given in lines 23–27 of Fig 12. This stream
object has object number 5, generation number 0, contains
a dictionary with 2 keys (/Filter and /Length), and has a
bytestream on line 26.

C. PDF Document Structure

From a semantic point of view, indirect objects in the PDF
body form a directed graph, with nodes being the indirect
objects and edges being references between indirect objects.
A few important entities in the graph are mentioned below:

• Pages are indirect objects that store graphical content for
pages of a PDF file. Each PDF page has its own separate
indirect object. An example of a page object is given in
lines 14–21 of Fig 12.

• Trailer is the root of the digraph. It contains metadata
for the PDF file and references the PDF Catalog indirect
object. An example of a trailer object is given in lines
39–43 of Fig 12.

• Catalog references the remainder of the document. It
references the root of the Page Tree Structure which in-

turn references the entirety of the Page Tree. It’s location
is stored by the /Root key in the Trailer object. An
example of a Catalog object is given in lines 3-8 of Fig
12.

Incremental Updates An incremental update allows to extend
a PDF by appending new information at the end of the file.
Incremental updates are of two types:

• Forms allow for user input in predefined form fields and
cannot change other content in the PDF.

• Annotations are not restricted to predefined places and
can be applied anywhere in the document.

We first describe the nonterminals used in the graph specifi-
cation. The nonterminal getgraph Prop can either be the infix
functions ‘or’ , ‘and’ , ‘in’ , ‘=’ or the prefix functions ‘not’,
‘inn’ , ‘ins’ , ‘eqs’, ‘eqn’. The function ‘in’ is a polymorphic
function that accepts 2 arguments and checks if the first
argument is contained in the second. The functions ‘inn’ and
‘ins’ are type-dependent implementations of ‘in’, where n
stands for number and s for string. The same holds for ‘eqs’
and ‘eqn’. The nonterminal ‘getGraph Index’ can be either
indexn or indexs, where n and s stand for numbers and strings
respectively. indexn inputs a number and a list of numbers and
returns the position of the number in the list; indexs is defined
similarly.

〈getgraph Prop〉 ::= or | and | not | in | inn | ins | = | eqs | eqn

| True | False

〈getGraph Index〉 ::= indexn | indexs

We now describe the nonterminals used in seman-
tic definition specification. The nonterminal ‘Attr Set’ can
be either ‘Root’, ‘Leaves’ or ‘Tree’. The nonterminal
‘Attr func’ can either be ‘make singleton array’, ‘dictval’
, ‘append all children attributes’ , ‘union’ , ‘or’ , ‘and’,
‘not’, ‘is empty array’ or ‘ancestor’. ‘make singleton array’
takes a single value and converts it to a singleton array.
‘dictval’ takes 2 arguments, an object and a key string, and
returns the value of that key of the object - the object
may not have an explict value and may be written in terms
of other functions. ‘append all children attributes’ takes a
object and an attribute name, and returns a list of the at-
tribute values of all children of that object.‘union’ is union
of two list, ‘is empty array’ checks if a list is empty or
not. Similarly the nonterminals ‘Attr Prop’ and ‘Graph Prop’
are defined below. ‘Graph Edge Set’ is an array of either
‘Quantifer Edge Set’ or ‘Graph Spec”s. The nonterminals
‘attr name’, ‘Node name’ and ‘Edge name’ can be any al-
phanumeric string. ‘attr name’ cannot be enclosed in quotes,
which are reserved for key names of objects.

〈Attr Set〉 ::= Root | Leaves | Tree

〈Attr fun〉 ::= make singleton array | dictval | union

| append all children attributes | or | and

| not

〈Attr Prop〉 ::= is set | is empty array | True | False | and

| or | not | in | inn | ins | eq | eqs

| eqn | implies

〈attr name〉 ::= [a− zA− Z0− 9]+

〈Graph Prop〉 ::= is empty arr

| True | False | or | and | not | in

| implies | inn | ins | eq | eqs | eqn

〈Graph Edge Set〉 ::= [〈Quantifier Edge Set〉+ | 〈Graph Spec〉]
〈Node name〉 ::= [a− zA− Z0− 9]∗

〈Edge name〉 ::= [a− zA− Z0− 9]∗

LANGSEC 2023 11

We now give the non terminals used in the semantic property
specification.

〈Sem Prop Prop〉 ::= | or | and | not | in

| inn | ins | eq | eqs | eqn | implies

is set | parent field | grandparent field

| ancestor | < | ochild field | PATH

| True | False

〈Sem Prop Set〉 ::= 〈Quantifier Node Set〉 | 〈Quantifier Edge Set〉
| 〈Graph Spec〉 | Root | Leaves | PATH

HTML: Unique Refstrings Property The tree structure is
the same as the one in the property that ensures HTML
head elements are referenced at most once. Each refstring
corresponding to a reference not to a ‘cite’ object must be
unique [28]. This property is specified by using a synthesized
attribute ‘id def’, which stores all the refstrings defined on a
path from that node to some leaf node. We finally check that
all refstrings are unique by checking for double occurrences of
a refstring in the ‘id def’ value of the root node. This property
is specified as follows:
Tree :
Root i s u n i qu e d s a t i s f y i n g d.<”Name”> = ” html ” .
f o r a l l d i n Tree , d0 i s C h i l d (d) where
d0.<” Id”> i n d.<” Kids”>

and d0.<”Name”> != ” c i t e ” .

Seman t i c D e f i n i t i o n s :
f o r a l l d i n Leaves , d.< i d d e f> =
m a k e s i n g l e t o n a r r a y (d.<” i d”>) .
f o r a l l d i n Tree ,
d.< i d d e f>=a p p e n d a l l c h i l d r e n a t t r i b u t e s (d.<” Id ”>,

<i d d e f >) un ion m a k e s i n g l e t o n a r r a y
(d.<” i d”>) .

Seman t i c P r o p e r t y :
f o r a l l d i n Root , i s s e t (d.< i d d e f >).

HTML: Nesting Order of Table Elements The tree
structure is the same as the one described before. A table in
HTML is represented by the ‘table’ element. ‘TR’, ‘TD’ and

‘TH’ are descendants of a ‘table’ element and represent a
row in a table, a data cell, and a header cell, respectively. A
‘TD’ and ‘TH’ element must necessarily be a child of a ‘TR’
element; however, a ‘TD’ or ‘TH’ element cannot be a table
itself, implying that a ‘TR’ element cannot be a child of a

‘TD’ or ‘TR’ element. This property is specified as follows:

HTML: Paragraphs cannot be nested For this property we
define the graph structure as the one whose sources are all
‘p’ nodes and kids are as defined before. A paragraph tag

(i.e. a ‘p’ tag) cannot be nested within each other. This
property is specified as follows:

SVG: References in ‘defs’ An SVG file is similar to an
HTML file with the difference being that the start element is
”svg” instead of ”html”. The tree structure for an SVG file is

defined similar to the tree structure for an HTML file.
References between elements in an SVG file are the same as

references in an HTML file. The SVG specification [1]
recommends that all referenced elements must be children of

the ‘defs’ element, and all referencing elements must be

Tree :
Root i s un i qu e d s a t i s f y i n g d.<”Name”> = ” html ” .
f o r a l l d i n Tree , d0 i s C h i l d (d) where d0.<” Id”>
i n d.<” Kids”> and d0.<”Name”> != ” h tml ” .

Seman t i c D e f i n i t i o n s :
TD i s d s a t i s f y i n g d.<”Name”> = ”TD” .
TR i s d s a t i s f y i n g d.<”Name”> = ”TR ” .
TH i s d s a t i s f y i n g d.<”Name”> = ”TH” .

Seman t i c P r o p e r t y :
f o r a l l d i n TD, e x i s t s d1 i n TR , d.<” Id”> i n d1 .<” Kids ”>.
f o r a l l d i n TD, f o r a l l d1 i n TR ,
n o t (d1 .<” Id”> i n d.<” Kids ”>).
f o r a l l d i n TH, e x i s t s d1 i n TR , d.<” Id”> i n d1 .<” Kids ”>.
f o r a l l d i n TH, f o r a l l d1 i n TR ,
n o t (d1 .<” Id”> i n d.<” Kids ”>).

Fig. 9: Nesting Order of Table Elements Property.

F o r e s t :
Root i s d s a t i s f y i n g d.<”Name”> = ” p ” .
f o r a l l d i n F o r e s t , d0 i s C h i l d (d) where
d0.<” Id”> i n d.<” Kids”>
and d0.<”Name”> != ” p ” .

Seman t i c D e f i n i t i o n s :

Seman t i c P r o p e r t y :
f o r a l l d i n Source , f o r a l l d1 i n Source , n o t (d i n d1) .

Fig. 10: Paragraph elements cannot be nested.

siblings of the ‘defs’ element. This property is specified as
follows:

Tree :
Root i s un i qu e d s a t i s f y i n g d.<”Name”> = ” svg ” .
f o r a l l d i n Tree , d0 i s C h i l d (d) where
d0.<” Id”> i n d.<” Kids”>
and d0.<”Name”> != ” svg ” .

Seman t i c D e f i n i t i o n s :
Ref i s (d1 , d2) s a t i s f y i n g d1.<” h r e f”> =
REFSTRING (d2.<” Id ”>)
where d1 i n [Tree] where d2 i n [Tree] .

Seman t i c P r o p e r t y :
f o r a l l (d1 , d2) i n Ref , p a r e n t f i e l d (d1 , <”Id ”>) =
g r a n d p a r e n t f i e l d (d2 , <”Id”>)
and p a r e n t f i e l d (d1 , <”Name”>) = ” d e f s ” .

SVG: No Use-use Circularity The tree structure is as the
one defined in the previous SVG property. A use-reference

in an SVG file is a reference between a ‘use’ and a ‘symbol’
element or a reference between a ‘use’ and a ‘use’ element.
A use-reference is denoted by an edge, and the set of these

edges is stored in the edge-set ‘Ref use’. The SVG
specification [1] requires that there cannot be a cycle of
use-reference edges. This property is specified as follows:

Tree :
Root i s un i qu e d s a t i s f y i n g d.<”Name”> = ” svg ” .
f o r a l l d i n Tree , d0 i s C h i l d (d) where d0.<” Id”>
i n d.<” Kids”> and d0.<”Name”> != ” svg ” .

Seman t i c D e f i n i t i o n s :
use i s d s a t i s f y i n g d.<”Name”> = ” use ” .
symbol i s d s a t i s f y i n g d.<”Name”> = ” symbol ” .
Ref use i s (d1 , d2) s a t i s f y i n g d1.<” h r e f”> =
REFSTRING (d2.<” Id ”>)
where d1 i n [use] where d2 i n [use , symbol] .

Seman t i c P r o p e r t y :
f o r a l l d3 i n use , f o r a l l d4 i n PATH(d3 , Ref use) ,
n o t (a n c e s t o r (d3 , d4) o r d3 = d4) .

LANGSEC 2023 12

Fig. 11: Performance plots for remainder of Specifications

We present the performance evaluations for the remainder of
the case studies in Fig 11.

1 %PDF-1.4
2 %M-?M-wM-"M-˜
3 1 0 obj
4 << /Lang (en-US)
5 /OpenAction [3 0 R /XYZ null null 0]
6 /Pages 4 0 R
7 /Type /Catalog >>
8 endobj
9 2 0 obj

10 << /CreationDate (D:20201218162631-05’00’)
11 /Creator <feff005700720069007400650072>
12 /Producer <feff004c006900620072 ... > >>
13 endobj
14 3 0 obj
15 << /Contents 5 0 R
16 /Group << /CS /DeviceRGB /I true /S
17 /Transparency >>
18 /MediaBox [0 0 612 792]
19 /Parent 4 0 R
20 /Resources 6 0 R
21 /Type /Page >>
22 endobj
23 ...
24 5 0 obj
25 << /Filter /FlateDecode /Length 36 >>
26 stream
27 xM-ˆ\3M-P3T(M-g*T0ˆ@B3C#ˆEsK#M-ˆEM-"TM-
28 ... endstream
29 endobj
30 ...
31 xref
32 0 8
33 0000000000 65535 f
34 0000000015 00000 n
35 0000000117 00000 n
36 0000000295 00000 n
37 0000000454 00000 n
38 0000000556 00000 n
39 0000000662 00000 n
40 0000000719 00000 n
41 trailer << /DocChecksum /84244FF450963B148
42 /Info 2 0 R
43 /Root 1 0 R
44 /Size 8
45 /ID [<d41805d1a8b6 ... >] >>
46 startxref
47 740
48 %%EOF

Fig. 12: A sample PDF file (with certain content omitted and
represented by ellipses).

