
A Survey of Parser Differential Anti-Patterns
Sameed Ali

Department of Computer Science
Dartmouth College

Hanover, USA
sameed.ali.gr@dartmouth.edu

Sean W. Smith
Department of Computer Science

Dartmouth College
Hanover, USA

sws@cs.dartmouth.edu

Abstract—Parser differentials emerge when two (or more)
parsers interpret the same input in different ways. Differences
in parsing behavior are difficult to detect due to (1) challenges
in abstracting out the parser from complex code-bases and (2)
proving the equivalence of parsers. Parser differentials remain
understudied as they are a novel unexpected bug resulting
from the interaction of software components—sometimes even
independent modules—which may individually appear bug-free.

We present a survey of many known parser differentials
and conduct a root-cause analysis of them. We do so with
an aim to uncover insights on how we can best conceptualize
the underlying causes of their emergence. In studying these
differentials, we have isolated certain design anti-patterns that
give rise to parser differentials in software systems. We show
how these differentials do not fit nicely into the state-of-the-art
model of parser differentials and thus propose improvements to
it.

Index Terms—parsing, parser differentials, LangSec

I. INTRODUCTION

Parser differentials emerge due to differences in parsing be-
havior of multiple parsers. Prior literature (e.g. [1]) credits the
idea to the study by Kaminsky et al of X.509 certificates [2].
However, one can dig up earlier examples—e.g., eXtropia
WebStore in 2000 [3] or IE in 2003 [4], and even argue that
ancient SQL injection vulnerabilities qualify. Subsequent to
the seminal X.509 work, parser differentials have since been
discovered in many other places, such as HTTP (e.g. [5]),
URLs (e.g. [6]), PDF (e.g. [7]) and various other formats
(e.g. [8–10]). The continued emergence of parser differentials
in a wide variety of software demands a thorough study of
their underlying causes.

Although prior results have demonstrated the existence of
parser differentials, a study to classify them has not yet
been conducted. A study of the root-causes of known parser
differentials will help illuminate the common anti-patterns that
give rise to them. Additionally, it will provide insight for
discovering advanced techniques to detect parser differentials
in software systems.

In this study, we do not claim to present an exhaustive
list of all known parser differentials. Instead, we present and
categorize a selection of known bugs whose root-cause could
be ascertained with confidence from the publicly available
information about the vulnerability. Additionally, we have
limited the number of parser differentials per category as our
goal is to illustrate the underlying reason for the emergence of
the parser differentials in that category rather than to list all

known parser differentials that fall under it. Therefore, in our
analysis, the parser differential vulnerabilities considered in
this paper function as representatives of design anti-patterns
that give rise to parser differential vulnerabilities. We have,
thus, carried out an analysis of the selected parser differentials
and isolated their root-cause to demonstrate common patterns
of parser differential vulnerabilities. To our knowledge, this
is the first contribution in the area of parser differentials that
aims to carry out such an analysis for a broad range of known
parser differentials and provides a categorization to aid our
understanding of parser differentials further.

We hope such an analysis will prove beneficial to re-
searchers developing automated tools for detecting parser
differentials. In addition, we hope it will function as advice
to software engineers and system architects to be aware of
anti-patterns that rise to parser differentials.

To this end, we make the following contributions:
• We present a survey of known parser differentials.
• We conduct a root-cause analysis for the parser differen-

tials under consideration to discover why they occurred.
• We conceptualize the root-causes and discover anti-

patterns that give rise to parser differentials.
• We suggest improvements to the conceptual model of

parse tree differential analysis in light of our research.

II. BACKGROUND

Software developers and system designers often assume that
input will be formatted correctly, and that parsers for the same
input format will interpret the same input the same way. They
then code as if differences in the interpretation of a file either
do not exist—or if they do exist, then they do not impact the
safety of the system in a significant way. This assumption
was explicitly challenged by the discovery of PKI Layer
Cake vulnerabilities [2], where the differences in interpretation
between parsers was shown to be exploitable. Moreover, it was
demonstrated that ambiguity in a specification could result in
vulnerabilities even among standard-compliant parsers.

In terms of formal grammars and parsers, one might initially
model parser differentials as follows:

• Parsers P1 and P2 both accept some input language L.
• For some valid input w ∈ L, P1 and P2 both accept w

but build different parse trees.
Throughout the paper, we will revisit and revise this model.

These discoveries naturally led to research on determining
the absence of variations in parsers. Determining the absence
of variations required proving the equivalence of the input
languages of the parsers under test. Standard results from
formal language theory (e.g., the computer science view of the
Chomsky Hierarchy) state that equivalence was only decidable
for some grammars and not others (although it appears that
decidability for deterministic context-free grammars (CFGs)
was not established [11] until 1997). Sassaman et al [12],
therefore, made a proposal for keeping the complexity of
input languages within those bounds where the equivalence is
decidable namely, deterministic context-free languages. They
also proposed a novel method for discovering differences
among parsers which they called a parse tree differential
attack. This attack, illustrated in Figure 1, works by giving
two parser implementations of the same format (or protocol)
the same input data and then observing the differences in the
generated parse trees. Differences in the generated parse trees
are indicative of potential vulnerabilities.

Parser 1 Parser 2

w1w1

Input

Language
w1 , w2 , w3 , w4 ...

Comparision of AST

Fig. 1. A parse tree differential analysis involves comparing the parse trees
generated from the parsers for differences.

III. CATEGORIES

This section categorizes the parser differentials according to
their root-causes. We first note that a single parser differential
can be caused by multiple factors. For example, the Zoom
Stanza Smuggling vulnerability below arose because faulty
parsing of the Unicode resulted in a higher-order parser
differential in the XML parser. Therefore, when we list a
parser differential under a category, we do not claim that
it exclusively belongs to that category only. The aim of the
categorization is to provide examples for an underlying anti-
pattern that causes parser differentials so that it can be better
understood. By focusing on one root-cause or anti-pattern at
a time we aim to emphasise it in order to show how that
particular pattern exhibits itself in multiple parser differentials.

Table I summarises the examples of parser differential we
will consider. And figure 2 shows where the categories emerge
in the software development process.

A. Programming Bugs: Overflow, Signed ints, off-by-one er-
rors

Parser differentials caused by logic bugs in code or pro-
gramming mistakes made by the programmers when writing
the parser would fall in this category.

Example 1: Android Master Key Parser Differential 1:
Freeman [13] documented a parser differential exploiting the
Android Master Key bug. This parser differential occurred
when the two parsers differed in parsing the local file headers
of the APK archive. The local headers have a structure that is
as follows: it begins with a fixed sized header, followed by a
name field, followed by an extra header field, followed by the
data. The extra header field is of variable length; its length is
provided in the initial header field. The structure of this header
(and an example exploit) is shown in Figure 3.

The Android OS has two parsers for APK files. One of
them, written in C++, is responsible for file extraction. The
second, written in Java, is responsible for verification.

If these two parsers differ on interpretation of the data bytes
contained in the archive, the verifier would verify a different
set of bytes from the ones extracted. An attacker can then
exploit this difference to provide a benign set of bytes to be
verified and a malicious set of bytes to be extracted.

The root cause of this parser differential was due to the
verifier reading the length of the extra field erroneously. As
mentioned earlier, this length value is parsed from the header.
However, the verifier read those bytes as 16-bit signed integers
rather than unsigned ones. Consequently, if a large enough
value was provided as the extra field’s length, the value read
by the verifier would wrap around and become negative due
to the two’s complement based signed integer representation
of Java. The verifier would, thus, miscalculate the start of the
data bytes.

Figure 3 shows how the two parsers view the same file
differently. It shows how if the value of the extra length field
is read as negative three by the verifier, it results in the data
bytes starting from a different position than that of the other
parser.

This parser differential is a result of a logical bug/program-
ming error. Parsing unsigned integer values as signed caused
them to overflow which resulted in a miscalculated offset.

Example 2: Psychic Paper: In 2020, parser differentials
among XML parsers in iOS lead to a zero day vulnerability.
Security researcher Siguza, who discovered these vulnera-
bilities, notes [14] that an XML document with an invalid
XML comment (“<!--->”) was accepted by multiple parsers
within iOS but was not interpreted by them in an identical way.
The invalid XML comment was read by one parser as a start
comment tag, by another as a start comment tag followed by an
end comment tag. This difference causes one parser to treat
parts of the XML as comments and ignore them while the
second parser does not treat them as comments and consumes
those parts.

More specifically, one parser after reading the “!--” part
of the invalid XML comment advances the pointer by three

TABLE I
PARSER DIFFERENTIALS AS DISCUSSED IN SECTION III

Name Programming Bug Delimiter Higher-Order Canonical Ignored Semantics Ambiguous Semantics Human Ambiguous Spec

1 ✓
2 ✓
3 ✓ ✓
4 ✓
5 ✓
6 ✓
7 ✓ ✓
8 ✓
9 ✓
10 ✓
11 ✓ ✓
12 ✓
13 ✓
14 ✓
15 ✓
16 ✓
17 ✓
18 ✓

User InteractionSpecification Design Software Design Implementation

1. Composition of parsers leads
to higher order parser differences.
2. Parsers differ on canonical forms.

1. How data is displayed to
 user leads to differential.

1. Programing Bugs.
2. Truncation (ambiguous delimiter).
3. Differences in specification interpretation.
4. Shotgun parsing design pattern.
5. Parser ignores semantics

1. Ambiguous specification
2. Multiple specifications for

one format.

Fig. 2. This figure shows where in the software development process parser differential anti-patterns can come about. It shows the phase of software
development where the root cause emerges: specification design: the process to writing down the specification of the protocol/format; software design: the
process of defining the software architecture, and high level design of the software; implementation: writing out the code of the software; user interaction: The
part when the software is in use and a user interacts with the software. The parser differential anti-patterns impact different stages of the software engineering
process thus they are not mutually exclusive. This diagram lists the anti-patterns.

characters. It therefore does not read the remaining “->” as a
comment end. On the other hand, the second parser advances
the pointer by two characters. It therefore reads the second
“-” character twice and thus sees both “<!--” and a “-->”
which leads it to believe the data represents a start and an end
comment tag.

As iOS represents permissions in XML, these differences
were quite useful to an attacker. These attacks were possible
because the parser was more permissive in accepting an input
than required by the specification.

Example 3: Multiple Common Name Fields in Certifi-
cates: The PKI Layer Cake work [2] also gives some instances
of this anti-pattern, compounded with others we will discuss
later.

Kaminsky et al discovered that parsers with integer over-
flow vulnerabilities could be exploited to create a source of
disagreement among parsers about what constitutes a common

name within an X.509 certificate. In its binary ASN.1 encoding
an X.509 certificate’s common name is an ASN.1 BER Se-
quence which consists of an Object Identifier (OID) followed
by a String containing the name of the website. The OID is
encoded as an unbounded integer. They found that if the value
of an integer was large enough, then (for some consumers) it
could overflow and get wrapped around. An attacker could,
thus, exploit this bug by creating OID-String pair that some
parsers would read as having an OID value identical to the
common name leading to different interpretations for the
common name.

Similarly, they found leading zeros in OIDs could be a
source of disagreement among parsers. The leading zeros in an
OID are ignored in some parsers and those OIDs are resolved
to a common name whereas in other parsers OIDs with leading
zeros are treated as a different OID.

They also reported that OpenSSL treats the leading zeros
in an OID as significant when parsing but omits those in its

DataExtraNameHeaders

Classes.dex dex\x00...\x00\x01......

Extra = 64K bytesNameHeaders Data

Format

Parser 1
(extract)

Example
Data Bytes

Parser 2
(verify) Headers Name

Extra = -3 bytes

Data

Fig. 3. This diagram shows a parser differential exploit for the Android Master Key vulnerability. Two parsers parse the same file differently, leading to
differences between the data that is verified and the data that is extracted. The vulnerability occurs because Parser 2 misreads the length of the extra section
as −3 which causes it to add −3 to the file pointer when it tries to calculate the start of the data section. This results in subtraction and hence Parser 2 thinks
the data section starts from the third last character of the name bytes.

textual representation. Thus, OIDs with leading zeros—which
OpenSSL internally treats as distinct—will appear as having
the same OID when displayed. Consequently, an application
using OpenSSL (via a command-line) to convert ASN.1 into
an ASCII string representation, and then parsing the ASCII
representation of ASN.1 to read the certificate would be
susceptible to a parser differential attack.

B. Ambiguous Delimiters (Truncation)

Sometimes parsers disagree on the delimiters of fields in a
format when parsing input data. If parsers differ on delimiters,
then they may either prematurely terminate parsing and thus
only parse a truncated input—or they may parse more data
than they should.

That is: given input w,
• one parser acts correctly,
• but another sees w as some w1w2 (for nonempty w2) and

parses only the prefix w1 (e.g., due to some confusing
characters).

Example 4: exTropia: In a vulnerability announced in
2000 [3], a parser differential in a web application resulted in
the access of restricted web resources. The web application
checked if the requested file was a valid html file by only
checking if the string ended in the characters “html.” If it did,
the application considers it an html file and requested the file
to returned. However, for a URL of the form

http://example.com/cgi-bin/Web store/web store.cgi?page=
../../../../../../../../etc/inetd.conf%00.html

something interesting happened. The web application (written
in Perl) treated the “%00” character as just any other ordinary

character and read the entire URL. However, when the open
file call is issued the underlying language treats the “%00”
as the end of string delimiter resulting in it returning the
“inetd.conf” file—a forbidden resource.

Example 5: IE URL parsing: In an IE vulnerability from
2003 [4], one part of the browser parses the URL to figure out
what site name to show to the user, and another parses it to
figure out what to fetch. When given a crafted URL such as

http://www.trusted site.com%01%00@malicious site.com/
malicious.html

the parser responsible for displaying the URL would stop pars-
ing when it encountered the URL-encoded null-byte “%00”
whereas the parser responsible for fetching the URL resource
read the entire URL. As a result, the browser informed the
user that they were browsing “trusted site.com” while they
were actually visiting “malicious site.com.”

Example 6: PKI Layer Cake: Kaminksy et al [2] pro-
vide more examples of this pattern in a section entitled
“Early null terminators.” When parsing X.509 certificates.
if null bytes are included in the domain name, then ambi-
guity over the string termination delimiter causes the cer-
tificate parsers to diverge. For instance, a CA may see
www.bank.com[NULL].badguy.com as “badguy.com” and is-
sue a cert for it. A victim’s browser, going to badguy.com,
would succeed in validating badguy.com against the certificate
the CA issued for it. However, due to a parser differential,
the browser will display “bank.com” as the validated website
being visited to the user. (In some scenarios, yet another
player is involved: parser confusion at the DNS with which
the browser interacts.)

http://example.com/cgi-bin/Web_store/web_store.cgi?page=../../../../../../../../etc/inetd.conf%00.html
http://example.com/cgi-bin/Web_store/web_store.cgi?page=../../../../../../../../etc/inetd.conf%00.html
http://www.trusted_site.com%01%00@malicious_site.com/malicious.html
http://www.trusted_site.com%01%00@malicious_site.com/malicious.html
www.bank.com[NULL].badguy.com

C. Higher Order Parser Differentials

Sassaman et al [12] introduced the concept of order of
a parser differential. A 0th-order differential involves only
one protocol; a higher-order parser differential is a parser
differential involving multiple protocols or data formats. A
higher-order parser differential occurs when the transformation
of data from one data format to another impacts the encoding
or decoding of another one; Sassaman et al proposed a nicely
behaved linear sequence.

Example 7: Zoom Stanza Smuggling: Zoom is a cross
platform video-conferencing application. It has a built-in chat
feature which allows the participants to send text-based mes-
sages to each other. Internally, the Zoom client application
uses XML to encode the messages along with some metadata
before sending it to the Zoom server. The Zoom server, after
receiving this XML input from the client application, processes
its contents and crafts an XML with the message embedded
in it and forwards it to the recipient.

The overall software architecture of Zoom has multiple
XML parsers and requires the XML parsers to have an
identical understanding of the same XML to function correctly.
This implicit assumption, regarding the parsing behaviour of
its constituent parts, was demonstrated to be false and was a
source of multiple vulnerabilities in the summer of 2022[15].

It was discovered that the zoom application allowed ma-
licious adversaries to inject arbitrary data into the XML
stanzas used to transfer the chat messages. This XML injection
allowed a malicious adversary to inject XML into the input
such that it was parsed differently by the server’s XML parser
and the receiving client’s XML parser.

Exploiting these differences in the XML parsers allows an
adversary to craft an XML message such that the receiving
zoom client would interpret it as two separate XML messages.
This attack was named “XML stanza smuggling” because it
resulted in an XML stanza smuggled across the Zoom server
to the receiving zoom client which interpreted the received
XML as two XML stanzas instead of one. The zoom system
architecture and the crafted XML document attack is shown
in Figure 4.

The root cause of interpreting the XML stanzas as two
messages by one XML parser and one message by another
XML parser was a logic bug in the UTF-8 encoding of the
XML characters. The UTF-8 encoding is a variable length
character encoding. The starting bits of a UTF-8 encoded
character encode how many bytes of data are going to encode
that particular character. For instance, if the first byte of a
UTF-8 character starts with 1110, then it is a three bytes long
encoded character. Additionally, the UTF-8 spec requires the
most significant bits of the remaining two bytes to start with
10.

In case of a crafted UTF-8 character where the first
byte started with 1110—thus signaling a three byte UTF-8
character—but the remaining two bytes did not start with 10,
the two XML parsers behaved differently. It is important to

note that this byte is an invalid input as it does not confirm to
the UTF-8 specification.

One XML parser interpreted it as a single UTF-8 character
(which is three bytes in size) and thus consumes two bytes
following the first byte as part of the same UTF-8 character.
However, the other XML parser interprets it as three UTF-8
characters (each of which is a single byte in size). Conse-
quently, if an XML tag boundary falls on such a ambiguous
UTF-8 character, then one parser interprets it as a single XML
tag and another interprets the XML as having multiple tags.

The root cause of this parser differential was due to a
mistake in implementing the Unicode spec. Both parsers were
accepting an invalid UTF-8 sequence. They, however, differed
in how they interpreted this invalid sequence of UTF-8 bytes
leading to this parser differential. Going through the bug fix
for this vulnerability on GitHub [16], one notices a missing
validation check to be the cause of this erroneous behavior.

Sassaman et al [12] would call this a first-order differential:
a difference in UTF-8 parsing leads to a difference in XML
parsing. However, we note there’s an additional wrinkle here:
the “higher-level” XML code at the server generates lower-
level strings that preserve the buggy UTF-8, which are then
sent on to the second XML parser; it’s not just a simple one-
direction channel.

We note that this example also differs from the simple model
of Section II—the initial w here (the malformatted UTF-8)
is actually not in the “correct” language. Both parsers are
accepting strings beyond the correct language, and parsing
things in this superset differently.

D. Differences in conversion to a canonical form

Differences in the conversion to a canonical form (or
normalization) of a protocol (or file format) specification by
software developers can lead to diverging parser behaviors.
Conversion to a canonical or normal form is the standard-
ization of an input by transforming it according to a set of
predefined transformation rules in a consistent manner. For
example, many web browsers convert the domain characters
and URL scheme to lowercase before fetching a web resource.
If the canonical form is modelled as a formal language, then
it should be the identical in the different software systems
processing it. Parser differentials may occur if they are not.

Example 8: TMUI RCE vulnerability: For instance, a
parser differential was caused by the differing normalization
of a URL in the TMUI RCE vulnerability (CVE-2020-5902)
discovered in F5 networks [17], [18].

In this case, there were two http servers, Apache httpd and
Apache Tomcat. The former was configured as a reverse proxy
server whose job was to forward a subset of the received HTTP
requests to the Tomcat server if the requests matched a certain
criteria. This architecture is illustrated in Fig 5.

The vulnerability was due to differing URL normalization
of Apache httpd server and the Apache Tomcat server. The
difference lies in the parsing of the URL path parameters.
Path segments of a URL are those parts of a URL that
are delimited by slashes and a URL can have optional path

Malicious XML

Client

Server

XML unparserXML parser

XML parser

AST

Unicode parser Unicode unparser

AST

Unicode parser

Fig. 4. This diagram illustrates the zoom video conferencing system architecture and the malicious XML sent by an attacker to the Zoom server. It shows
the locations of the parsers inside the server and the client. It also shows how the XML and Unicode parsers interact with each other.

Client

/etc/passwd
returned

��
������������������������������
���
�����	
���������������������������	����
���

�� ��������������������������������������
	����������	
�������	����������	������
��	����
�
��
	����������	
�������	����������	������
��	����
��
������
���
����	��������	
�	�
�������	��

����������������������������
	����������	
�������	����������	������
��	����

1 1

2

3

L2

If URL matches pattern
 proxy request
else
 self-process request

Parse URL

Convert URL to
canonical form

1

1

L1
L1 ≠ L2

Reverse Proxy Server Backend Server

Parse URL

Convert URL to
canonical form

Resolve “../” in path

Process Request

Fig. 5. This figure illustrates the parser differential which caused the TMUI F5 vulnerability (CVE-2020-5902). The reverse proxy server and the backend
server both processed the URL into a canonical form but this form was not identical. Disagreement in understanding of URL led to the parser differential, as
shown by the red arrow. The numbers show what the input URL looks like at various stages of the system.

parameters at the end of a path segment. Path parameters start
after a semicolon character “;” and can contain non-slash, non-
semicolon characters.

When the Apache httpd server parsed URL 1 shown in Fig 5
and converted it to a canonical form, it allowed the semicolon
character “;” to remain in the http path. On the other hand,

Apache Tomcat removed the URL contents from the “;” to the
next forward slash when processing a URL because it consid-
ered these a path delimiter. After removing the semicolons, it
normalized the path and executed the request. Fig 5 shows an
overview of the inner workings of the parsers involved. Thus,
in this case the parser differential resulted because of differing

notions of canonical forms conversion of the URLs between
the reverse proxy and the backend server.

E. Semantic Parser Differentials: Ignoring Semantics

Semantic parser differentials occur when two parsers may
produce the same tree, but then differ in their semantic
interpretations of that tree.

Example 9: GitLab: HTTP reverse proxies are web
servers which sit in front of the backend servers and relay
HTTP traffic to the backend servers. They are often imple-
mented to increase security, performance and reliability of a
service.

These reverse proxies are often configured to act as request
sanitizers—whose job is to only allow certain types of HTTP
requests to the backend server. They achieve this by rewriting
the HTTP requests as they proxy them to the backend server.

If parsing differences exist between the HTTP request parser
of the proxy server and the backend server, then the reverse
proxy may allow those HTTP requests that it considers benign
to pass through but which result in malicious behaviour when
the HTTP backend server processes them.

This was the case for the file upload GitLab security
vulnerability [19]. The GitLab reverse proxy was configured
to rewrite all PUT requests to the backend server. Thus, under
normal system operating conditions PUT requests were not
allowed to go through from the reverse proxy to the backend
server without being processed first.

To understand how the vulnerability came about one needs
to mention that some HTTP servers provide a way to override
the HTTP method of a request by passing custom headers
in the request. These custom headers specify the HTTP
method name which takes precedence over the HTTP method
specified at the beginning of the HTTP request. This additional
functionality exists in some web frameworks to allow them to
bypass restrictive web application firewalls [20]. Other times
this functionality is added for compatibility reasons: some
existing HTTP libraries, for example, do not allow the creation
of HTTP methods other than GET and PUT. Thus, in those
situations an alternative way to specify the additional HTTP
methods is needed. This technique is referred to as “verb
tunneling”.

The GitLab differential was due to the reverse proxy HTTP
parser ignoring the HTTP method override header and the
backend’s HTTP parser not doing so. The reverse proxy in
this case was written in Go. The backend server was written in
the Ruby programming language and used the Ruby On Rails
web framework which supported the HTTP method override
functionality. When a PUSH request with a HTTP method
override header—asking the request to be considered a PUT
request — was received by the reverse proxy, it was interpreted
as an ordinary PUSH request and forwarded unmodified. The
backend server upon receiving this request interpreted it as a
PUT request and processed it. Thus a crafted HTTP request
was able to bypass the request rewriting of the reverse proxy.

In this example, the differences in the parsers are not
due to misidentifying the correct delimiter or some other

such syntactical parsing difference. It is, instead, a semantic
difference.

The simple model of parser differentials fails to capture such
semantic differentials. Parser differentials of this kind would
not be detected by checking if the parse trees generated by
the parsers are identical. Furthermore, such examples show
that merely looking at the Chomsky hierarchy is not enough.
We need to consider semantics of a grammar to prevent parser
differentials.

F. Semantic Parser Differentials: Semantic Ambiguities (Du-
plicate Keys)

Semantically ambiguous parser differentials are caused by
an input which is syntactically valid but is semantically
ambiguous. A semantic ambiguity could result in parsers
interpreting the same input differently and generating differing
parse trees from it.

For instance, in our analysis of known parser differen-
tials, we came across parser differentials where the input
language was designed to express key-value pairs. The parsers
processing these input languages assumed the uniqueness of
keys when processing the input. It was, however, possible
to construct syntactically valid inputs which had duplicate
keys. These inputs were syntactically valid but semantically
ambiguous. When faced with input with duplicate entries (i.e.
multiple entries with the same key value), a parser has to
chose an entry among the duplicates which will provide the
value for the key under consideration resulting in a semantic
ambiguity. A parser differential results when different parsers
chose different entries and the selected entries have different
values.

The occurrence of this anti-pattern in wide variety of areas
suggests a common anti-pattern of parser differentials.

Example 10: Android Master Key Vulnerability 2:
The Android APK format—the file format used by Android
applications—follows the ZIP format description. The ZIP
format allows defining two files with the same name in a
ZIP archive but does not specify which should be used in
case of duplicates. In the case of a maliciously crafted APK,
which has two files of the same name, Android OS verifies
the signature the first file of that name, whereas the Package
Installer would use the second file of that name for installation.
As a consequence, an attacker is able to install unsigned code
by placing the first file with a valid signature and the second
file with the malicious code in it.

A root-cause analysis of the bug reveals that it was due a
difference in the hash-table data structure used to store the
parsed data. In one parser, which was implemented in Java,
a hashmap was used to store the parsed data. When multiple
items of the same key were added to the hashmap, the hashmap
would store the last entry and ignored the previous entries.

On the other hand, in the second parser, which was imple-
mented in C, the parser used a hash table with linear probing.
This data structure, returned the first entry when multiple
entries of the same key were added to it.

������������

�������������������������
	����
������

��������
��������
�������

������������������������

������������������������������
����������	��� �����������

��� ��

����� �������� ��

Fig. 6. This figure shows how the GitLab parser differential works. A post request with a method override is forwarded by the proxy server because it thinks
it is a post request but the backend server interprets it as a put request.

Thus, when a ZIP file having multiple files with the same
name in it was parsed by the Java parser, the last file of the
same name was considered by the parser. However, in the C
parser, the first file of that name was considered. Consequently,
the interpretation of the ZIP archive differed between the two
parsers resulting in the vulnerability.

The parsers made the implicit assumption that a ZIP archive
will not have duplicates, but that was not the case as it was
allowed by the ZIP format. Thus we note this is another
example where a simple linear order for differentials does not
quite work: another view of a root cause here is one protocol
(where key-values should be unique) borrowing a format from
another protocol (which permits duplicates) — a phenomenon
we suggest calling a “side-order” differential.

Example 11: Duplicate Keys in JSON:
JSON is a lightweight data-interchange format, widely used

on the internet to transfer data. The data format consists of
key-value pairs and arrays. In this data format it is possible to
construct inputs which are syntactically valid but semantically
ambiguous by defining multiple keys of the same name with
different values. The JSON specification, according to Section
4 of RFC 8259 [21], states that the names within an object
should be unique. However, it does not require them to be so.
The RFC, additionally, requires that all inputs conforming to
the specification be accepted.

When JSON parsers are given JSON with duplicate keys
having non-identical values as input to parse, their parse results
are often not identical to other JSON parsers. Parsers have to
prefer one entry among the duplicate ones as the authoritative
entry. Often, parsers do not give precedence to the same entry
which leads to parser differentials. Prior security research [10]
has documented the existence of such parser differentials.

In this example, we note the ambiguity which is the cause
of the parser differential stems from the format specification
itself. By considering duplicate keys in JSON as valid, not
specifying a criteria for precedence among them and requiring
parsers to parse all valid JSON, the specification leaves enough
details ambiguous and unclear that causes parser differentials
to emerge. Further, parsers which enforce additional semantic

conditions for a successful parse — such as rejecting JSON
objects with duplicates or rejecting JSON with integer values
in a field which are out of a semantically meaningful range
— can also be susceptible to semantic parser differentials if
all parsers in the system do not have the same criterion of
accepting or rejecting JSON objects.

Example 12: Duplicate HTTP parameters: Consider the
following HTTP URL

http://www.example.com/search?foo=1&foo=123

From the URL it is not clear what value should the parameter
“foo” take? Should it be 1 or 123 or both?

As early as 2009 [22], researchers have pointed out that
HTTP requests with multiple parameters having the same
name results in differing parsing behavior among parsers of
known HTTP servers.

The Go language’s HTTP package says in its documentation
that it will return the first parameter value [23] it sees (i.e.
foo is 1). However, in Django (a python web framework)
multiple values are stored in a dictionary, which returns the
last value (foo = 123). Django implementations save the parsed
values in a QueryDict structure This structure is designed to
handle multiple values and this has been mentioned in the
documentation [24].

In this case, the parser differential is due to an implemen-
tation difference because of the type of data structure used.
However, this difference is intentional as the expected behavior
of the data structures is noted in the source code comments and
the documentation of the framework themselves. Nevertheless,
if the system designer overlooks this difference would result
in a vulnerable system.

Example 13: Email Sender Spoofing: A similar pattern
appears in emails sent with multiple From: header entries.
Shen et al [25] report that if multiple From: headers are
provided when sending an email, some mail user agents verify
one email address via DMARC but display the other one to the
user. This parser differential may allow an attacker to spoof
their email address.

http://www.example.com/search?foo=1&foo=123

Other Examples: The seminal PKI Layer Cake paper [2]
documents many instances of trouble (some building on Ex-
ample 3 above) due to differing interpretations of an X.509
item with multiple common names.

G. Parser Differentials Involving Human Interaction

Earlier in this paper we argued that parser differentials
occur when two computers differ in their understanding of the
same data. A similar situation may also occur when humans
and computer interact with the same data and differ in their
understanding of what that data means.

In an adversarial scenario, these parser differentials can be
defined as those that occur when an attacker sends crafted
input to an application such that when the application parses
the input and displays it renders the input in manner that puts
the user at risk of interpreting the displayed data differently
than how the computers understands it.

Example 14: Information in Invalid Certificates: In an-
cient times, one such example was when a browser encoun-
tered an invalid or unsigned SSL certificate and warned the
user. However, the warning repeated information from the
unverified certificate—so if the adversary crafted a fake cer-
tificate from “Trustworthy Corporation,” the user was told the
the browser “could not verify this certificate from Trustworthy
Corporation,” and the user would conclude it was OK.

Example 15: PDF malware campaign: A more recent
example is the PDF malware campaign reported by HP in
May 2022 [26]. The attacker crafted a malicious PDF with an
embedded docx file. However, the attacker sneakily named the
file

has been verified. However PDF, Jpeg, xlsx

When the PDF reader then displays a prompt to confirm
from the user whether this is trustworthy, it appears as if
the filename was part of the text from the reader, not the
filename. Fig 7 shows the window. The user is at risk of
parsing the displayed sentence in a way that is at odds with
how the computer understands the displayed message. The
user is, hence, at risk of unknowingly accept the prompt and
opening the embedded file.

Interestingly, in the attack, the prompt is not grammatical—
we have yet another case of a parser—the human—“helpfully”
correcting the input.

Example 16: Unicode Trojan Source: Boucher et al [27]
have shown how the bidirectionality of Unicode characters can
be utilized to create source code which looks innocuous to a
programmer reading the displayed text but is actually code
instructing the compiler to do something different.

The attack, which also referred to as the Unicode Trojan
source code attack, is another interesting example of a differ-
ential where the user’s understanding of what the computer
is presenting differs from how the computer understands the
presented data.

Example 17: PDF Shadow Attack: The Shadow at-
tacks [7] are yet another example of a parser differential that
falls in this category. The attacks involve modifying a signed
PDF document with an incremental update. The PDF viewer
tells the user that the document is signed. However this can
be interpreted in two ways: (1) the document was signed then
updated or (2) the document was updated then signed. The
user cannot easily distinguish between the two and they might
erroneously interpret the displayed document as (2) whereas
the computer understands (1).

H. Ambiguous Specifications

The simple model from Section II implicitly assumed that
all parsers (and their developers) were targeting a clearly
defined language. However, this is not all the case. As our
discussion in Example 11shows ambiguity of the specification
can lead to parser differentials.

Example 18: Underscores in Email Addresses: Some
email parsers do not allow the underscore character (“ ”) in
the host name part of an email [28], but others do (such
as Python’s standard library’s email parser). Going through
discussions of developers online [29], [30], one finds confusion
and disagreement among the developers regarding the use of
underscore in an email addresses host name. The root of the
confusion lies in the difference in a domain name and the
host name. A domain name is a identifier of a resource on a
DNS database but a host name is a special type of domain
name which identifies internet hosts. Domain names allow
underscores but host names do not. The RFC2181 [31] makes
a distinction between a domain name and a host name. A host
name must follow all rules for a domain name but in addition
to those rules it should also satisfy the additional requirements
of a host name. Whereas, a domain name only needs to satisfy
the domain name requirements. Thus, when writing a parser
for email, one needs to be aware of three specifications: the
email specification, the domain name specification and the host
name specification. When developers have to follow multiple
specifications for a format then the clarity of a specification de-
creases. An otherwise clear specification becomes ambiguous
in practice because many people misinterpret or misunderstand
it.

Other Examples: Example 9 above (GitLab) also mani-
fests this problem. The HTTP 1.1 spec [32] itself does not
mention verb tunneling or method override. However, this
functionality is a part of numerous HTTP web frameworks.
This divergence from the specification for practicality is an-
other reason that caused that parser differential to emerge.

IV. REVISITING THE MODEL

In light of these examples, we now revisit the thinking of
Section II.

A. Hunting Differentials in Practice

Looking at programs in the wild leads us to emphasize:
discovering parser differentials in practice is hard. Not only

Fig. 7. This figure shows the prompt generated by the crafted malicious PDF file. The prompt is deliberately crafted to easily be misread by the end user.
It achieves this by crafting a phrase which changes the meaning of the sentence presented by the prompt if careful attention is not paid when reading the
prompt. This image is from [26].

do clearly defined abstract syntax trees often not exist in code;
but parsers also often carry out “shotgun parsing” [33] which
is a coding pattern where parsing and input validation code
is spread across code that processes the input. Additionally,
programs in the wild are under no obligation to use standard
parsing algorithms for parsing the input (and typically do not
do so). Instead, they often parse input in unexpected and
unintuitive ways. For instance, in one parser we observed
the command line program grep was used to search for a
keyword in the given input for the sake of parsing the input.
Therefore, carrying out a parser differential attack as described
in Section II is ultimately limited in practice because software
do not neatly convert the given input into clearly defined ab-
stract syntax trees which can then be compared and contrasted
with each other. Prior research [5] has used grammar based
differential fuzzing to search for parser differentials. These
approaches have been successful in discovering many parser
differentials. However, fuzzers do not ensure they have discov-
ered all parser differentials in a systems. Moreover, fuzzers
too rely on our understanding of how a parser differential
operates, and if our conceptual understanding of how a parser
differential behaves is limited, then it impacts the fuzzers we
construct to discover them. For instance, in the prior work
only those differentials are noticed which have different parse
trees, whereas we show how intermediate representations, and
data structure differences (that may go unnoticed by a fuzzer)
can also produce differentials. Therefore, to build better au-
tomated discovery tools, we first need to better comprehend
how parser differentials operate. Prior work by Sassaman et
al [12] provides a beneficial abstract model for understanding
the assumptions made by software systems and how they
should operate in an ideal scenario. Therefore, we suggest
improvements to that model for the sake of better conceptual
clarity in light of the parser differentials discussed in the
sections above.

B. The Basic Language Model

Looking at real examples, we see the characterization “for
some valid input w ∈ L, P1 and P2 both accept w but
build different parse trees” is insufficient. Often, the w is
outside the language being targeted—the parsers accept that

which they should reject. Often, the parsers themselves have
been designed (implicitly or explicitly) for different languages;
that, combined with overly liberal acceptance, leads to lots of
combinations of where the crafted w should lie.

C. Orders

Prior thinking suggested a simple linear order for differen-
tials: if we have n > 1 levels of protocols and a differential
in parsing protocol P1 leads to a differential in Pn, then we
have a differential of order n− 1.

However, we see that the flow can be more complicated
than that. A P1 problem can go to P2, then back to P1, then
on to a second consumer of P2, where the difference is finally
manifested. For both protocol formats and specifications, we
also see side-order differentials: a differential arises because
one instance borrows structure from a peer instance.

D. Differentials and Decidability

As the literature observes, we might view testing if two
parsers do the same thing as testing if they accept the same
language. If we view the parser as a grammar, this means
testing the equivalence of two grammars. As noted earlier,
standard formal language theory tells us that such testing
is undecidable for non-determinstic CFGs and higher, but
decidable for deterministic CFGs and lower.

However, in some prior literature [11], [34],
• weak equivalence is when two grammars accept the same

language
• structural equivalence (sometimes called strong equiva-

lence) is when two grammars not only accept the same
language, but also generate congruent parse trees for each
accepted string

The standard textbook results, rephrased in terms of these def-
initions, only refer to weak equivalence. However, for parser
differentials, one can argue that what we really care about
is strong equivalence. Furthermore, the literature for strong
equivalence [34] hides a surprising result: strong equivalence
of CFGs is decidable—even of non-deterministic CFGs! This
work goes further: suppose we define the parenthesized ver-
sion of a CFG by

• adding two new non-terminals [and]

• then replacing each rule A −→ w with A −→ [w]

Then two CFGs are strongly equivalent exactly when their
parenthesized versions are weakly equivalent. Basically, the
parentheses embody the parse tree structure. The more recent
Reghizzi et al monograph [11] goes even further and observes:
parenthesized CFGs are deterministic. Together, this suggests a
decision procedure for parser differentials of the same format.
Consider the CFGs G1 and G2 which represent the same
format and are, hence, nearly identical albeit with minor differ-
ences. We can parenthesize them (and get deterministic CFGs),
and then test for weak equivalence. If weak equivalence holds,
then G1 and G2 accept the same things with the same parse
trees. If weak equivalence does not hold, then we have at least
one of the following:

• L(G1) ̸= L(G2)
• there exists some w which G1 and G2 both accept, but

parse differently.
Using these strong-equivalence results and applying them
towards parser differential analysis would be an interesting
area for future work — although likely made messier by the
complications from Section IV-B above.

E. Semantics

Formal grammars which define the Chomsky hierarchy
(i.e. regular, context free, context sensitive and recursively
enumerable grammars) concern themselves with the syntax
of a formal language and not its semantics. However, the
GitLab parser differential (Subsection III-E) shows us parser
differentials can occur due semantic differences in parsing a
message. If one were to look merely for syntactical differences
in parsing of that malicious HTTP request one would not
find them. It is the semantics of the header that change
the method of the request. Similarly, the examples discussed
in Subsection III-F provide additional evidence that parser
differentials can be caused by inputs that are syntactically valid
but semantically ambiguous. In those cases it was the semantic
ambiguity of duplicate key-values that caused the parsers to
differ. Therefore, we suggest that one should consider model-
ing program input with grammars that are semantically aware.
Attribute grammars, for instance, allow us to supplement a
formal grammar with semantic information. Such grammars
are able to capture the semantic aspects of the parser. Thus
allowing semantic parser differentials to become a part of our
analysis.

F. Intermediate languages in programs

Programs sometimes transform the input into an intermedi-
ate form before processing it. As shown in Subsection III-D,
the differences in this conversion can also lead to parser
differentials. In this case, we have a difference in the inter-
mediate language generated from the input: the normalized
URL. Thus, we suggest to consider not only the input and
the abstract syntax tree of the input in our model but also
consider the intermediate languages that systems implicitly
assume programs will have an identical understanding of.

Parser 1 Parser 2

w1w1

Input

Language
w1 , w2 , w3 , w4 ...

Comparision of AST

v1 , v2 , v3 , v4 ...

v1
v1

Intermediate

Language

Unparser 1 Unparser 2

Comparision of Output

Fig. 8. This figure shows how we can include the transformation of the
input into an intermediate language into account in our model. In addition
to comparing the AST, one needs to compare the generated intermediate
language word to ensure both models are consistent.

This would involve extending the model to include the con-
version of the abstract syntax tree to the intermediate language
in our analysis. This means in addition to comparing the
abstract syntax tree, we also need to compare the intermediate
language generated when an input is given to a parser to ensure
consistency. This is illustrated in Figure 8.

V. CONCLUSION

We have shown how the various parser differentials do
not fit nicely into the parser differential model proposed by
Sassaman et al [12], and we propose improvements on the
model.

ACKNOWLEDGMENT

This material is based in part upon work supported by the
Defense Advanced Research Projects Agency (DARPA) under
contracts HR001119C0075 and HR001119C0121. Any opin-
ions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily
reflect the views of DARPA.

REFERENCES

[1] L. Sassaman, M. L. Patterson, S. Bratus, and A. Shubina, “The halting
problems of network stack insecurity,” USENIX; login, vol. 36, no. 6,
pp. 22–32, 2011.

[2] D. Kaminsky, M. L. Patterson, and L. Sassaman, “Pki layer cake: New
collision attacks against the global x. 509 infrastructure,” in International
Conference on Financial Cryptography and Data Security. Springer,
2010, pp. 289–303.

[3] f0bic, “Security advisory: extropia webstore directory traversal vulner-
ability,” https://seclists.org/bugtraq/2000/Oct/134, 2000.

[4] Secunia Advisories, “Internet explorer url spoofing vulnerability,”
https://web.archive.org/web/20041209035254/http://secunia.com/
advisories/10395/, 2003.

[5] B. Jabiyev, S. Sprecher, K. Onarlioglu, and E. Kirda, “T-reqs: Http
request smuggling with differential fuzzing,” in Proceedings of the 2021
ACM SIGSAC Conference on Computer and Communications Security,
2021, pp. 1805–1820.

[6] J. Reynolds, A. Bates, and M. Bailey, “Equivocal urls: Understanding
thenbsp;fragmented space ofnbsp;url parser implementations,” in
Computer Security – ESORICS 2022: 27th European Symposium on
Research in Computer Security, Copenhagen, Denmark, September
26–30, 2022, Proceedings, Part III. Berlin, Heidelberg: Springer-
Verlag, 2022, p. 166–185. [Online]. Available: https://doi.org/10.1007/
978-3-031-17143-7 9

[7] S. Ali, P. Anantharaman, Z. Lucas, and S. W. Smith, “What we have
here is failure to validate: Summer of langsec,” IEEE Security & Privacy,
vol. 19, no. 3, pp. 17–23, 2021.

[8] James Kettle, “Http desync attacks: Request smuggling reborn,”
https://portswigger.net/research/http-desync-attacks-request-smuggling-
reborn, 2019.

[9] David Buchanan, “Png parser differential,” https://
www.da.vidbuchanan.co.uk/widgets/pngdiff/, 2021.

[10] Jake Miller, “An exploration of json interoperability vulnerabilities,”
https://bishopfox.com/blog/json-interoperability-vulnerabilities, 2021.

[11] Reghizzi, Stefano Crespi and Breveglieri, Luca and Morzenti, Angelo,
Formal languages and compilation. Springer, 2013.

[12] L. Sassaman, M. L. Patterson, S. Bratus, and M. E. Locasto, “Security
applications of formal language theory,” IEEE Systems Journal, vol. 7,
no. 3, pp. 489–500, Sep. 2013.

[13] Jay Freeman, “Android bug superior to master key,” http://
www.saurik.com/id/18, 2023.

[14] Siguza, ““psychic paper”,” https://blog.siguza.net/psychicpaper/, 2020.
[15] Ivan Fratric, “Zoom stanza smugglling or how i hacked zoom,”

https://www.blackhat.com/us-22/briefings/schedule/#xmpp-stanza-
smuggling-or-how-i-hacked-zoom-26618, 2022.

[16] hartworkhartwork, “[CVE-2022-25235] lib: Protect
against malformed encoding (e.g. malformed UTF-8)
#562,” https://github.com/libexpat/libexpat/pull/562/commits/
3f0a0cb644438d4d8e3294cd0b1245d0edb0c6c6, 2022.

[17] Ollie Whitehouse, “Understanding the root cause of F5 Networks
K52145254,” https://research.nccgroup.com/2020/07/12/understanding-
the-root-cause-of-f5-networks-k52145254-tmui-rce-vulnerability-cve-
2020-5902/, 2020.

[18] Mitre, “Cve-2020-5902,” https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2020-5902, 2020.

[19] Joern Schneeweisz, “How to exploit parser differentials,” https:
//about.gitlab.com/blog/2020/03/30/how-to-exploit-parser-differentials/,
2022.

[20] Microsoft, “X-http-method in ms-odata protocol,” https:
//learn.microsoft.com/en-us/openspecs/windows protocols/ms-odata/
bdbabfa6-8c4a-4741-85a9-8d93ffd66c41?redirectedfrom=MSDN,
2019.

[21] Internet Engineering Task Force, “The javascript object notation data
interchange format,” https://www.rfc-editor.org/rfc/rfc8259, 2017.

[22] Luca Carettoni, “Http parameter pollution,” https://owasp.org/www-pdf-
archive/AppsecEU09 CarettoniDiPaola v0.8.pdf, 2009.

[23] Google Go Authors, “Go Package source code,” https:
//cs.opensource.google/go/go/+/master:src/net/url/url.go;drc=
0765da5884adcc8b744979303a36a27092d8fc51;l=885, 1999.

[24] Django Documentation authors, “Django documentation,”
https://docs.djangoproject.com/en/4.1/ref/request-response/
#django.http.QueryDict.

[25] K. Shen, C. Wang, M. Guo, X. Zheng, C. Lu, B. Liu, Y. Zhao,
S. Hao, H. Duan, Q. Pan et al., “Weak links in authentication chains:
A large-scale analysis of email sender spoofing attacks,” arXiv preprint
arXiv:2011.08420, 2020.

[26] Patrick Schläpfer, “Pdf malware is not yet dead,” https:
//threatresearch.ext.hp.com/pdf-malware-is-not-yet-dead/, 2022.

[27] N. Boucher and R. Anderson, “Trojan source: Invisible vulnerabilities,”
arXiv preprint arXiv:2111.00169, 2021.

[28] salesforce fourm, “Allow underscores in email domain fields,”
https://ideas.salesforce.com/s/idea/a0B8W00000Gdf2gUAB/allow-
underscores-in-email-domain-fields.

[29] StackOverflow, “Can a subdomain have underscore in it?”
https://stackoverflow.com/questions/2180465/can-domain-name-
subdomains-have-an-underscore-in-it.

[30] google groups, “Underscores in Domain Names,” https:
//groups.google.com/g/comp.protocols.dns.bind/c/kxJQspiOE8E.

[31] Network Working Group, “Clarifications to the DNS Specification,”
https://www.rfc-editor.org/rfc/rfc2181#section-11, 1997.

[32] The Internet Society, “Hypertext transfer protocol,” https://www.rfc-
editor.org/rfc/rfc2616, 1999.

[33] F. Momot, S. Bratus, S. M. Hallberg, and M. L. Patterson, “The seven
turrets of babel: A taxonomy of langsec errors and how to expunge
them,” in 2016 IEEE Cybersecurity Development (SecDev), 2016, pp.
45–52.

[34] M. C. Paull and S. H. Unger, “Structural equivalence of context-free
grammars,” Journal of Computer and System Sciences, vol. 2, no. 4,
pp. 427–463, 1968. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0022000068800376

https://seclists.org/bugtraq/2000/Oct/134
https://web.archive.org/web/20041209035254/http://secunia.com/advisories/10395/
https://web.archive.org/web/20041209035254/http://secunia.com/advisories/10395/
https://doi.org/10.1007/978-3-031-17143-7_9
https://doi.org/10.1007/978-3-031-17143-7_9
https://portswigger.net/research/http-desync-attacks-request-smuggling-reborn
https://portswigger.net/research/http-desync-attacks-request-smuggling-reborn
https://www.da.vidbuchanan.co.uk/widgets/pngdiff/
https://www.da.vidbuchanan.co.uk/widgets/pngdiff/
https://bishopfox.com/blog/json-interoperability-vulnerabilities
http://www.saurik.com/id/18
http://www.saurik.com/id/18
https://blog.siguza.net/psychicpaper/
https://www.blackhat.com/us-22/briefings/schedule/#xmpp-stanza-smuggling-or-how-i-hacked-zoom-26618
https://www.blackhat.com/us-22/briefings/schedule/#xmpp-stanza-smuggling-or-how-i-hacked-zoom-26618
https://github.com/libexpat/libexpat/pull/562/commits/3f0a0cb644438d4d8e3294cd0b1245d0edb0c6c6
https://github.com/libexpat/libexpat/pull/562/commits/3f0a0cb644438d4d8e3294cd0b1245d0edb0c6c6
https://research.nccgroup.com/2020/07/12/understanding-the-root-cause-of-f5-networks-k52145254-tmui-rce-vulnerability-cve-2020-5902/
https://research.nccgroup.com/2020/07/12/understanding-the-root-cause-of-f5-networks-k52145254-tmui-rce-vulnerability-cve-2020-5902/
https://research.nccgroup.com/2020/07/12/understanding-the-root-cause-of-f5-networks-k52145254-tmui-rce-vulnerability-cve-2020-5902/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-5902
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-5902
https://about.gitlab.com/blog/2020/03/30/how-to-exploit-parser-differentials/
https://about.gitlab.com/blog/2020/03/30/how-to-exploit-parser-differentials/
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-odata/bdbabfa6-8c4a-4741-85a9-8d93ffd66c41?redirectedfrom=MSDN
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-odata/bdbabfa6-8c4a-4741-85a9-8d93ffd66c41?redirectedfrom=MSDN
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-odata/bdbabfa6-8c4a-4741-85a9-8d93ffd66c41?redirectedfrom=MSDN
https://www.rfc-editor.org/rfc/rfc8259
https://owasp.org/www-pdf-archive/AppsecEU09_CarettoniDiPaola_v0.8.pdf
https://owasp.org/www-pdf-archive/AppsecEU09_CarettoniDiPaola_v0.8.pdf
https://cs.opensource.google/go/go/+/master:src/net/url/url.go;drc=0765da5884adcc8b744979303a36a27092d8fc51;l=885
https://cs.opensource.google/go/go/+/master:src/net/url/url.go;drc=0765da5884adcc8b744979303a36a27092d8fc51;l=885
https://cs.opensource.google/go/go/+/master:src/net/url/url.go;drc=0765da5884adcc8b744979303a36a27092d8fc51;l=885
https://docs.djangoproject.com/en/4.1/ref/request-response/#django.http.QueryDict
https://docs.djangoproject.com/en/4.1/ref/request-response/#django.http.QueryDict
https://threatresearch.ext.hp.com/pdf-malware-is-not-yet-dead/
https://threatresearch.ext.hp.com/pdf-malware-is-not-yet-dead/
https://ideas.salesforce.com/s/idea/a0B8W00000Gdf2gUAB/allow-underscores-in-email-domain-fields
https://ideas.salesforce.com/s/idea/a0B8W00000Gdf2gUAB/allow-underscores-in-email-domain-fields
https://stackoverflow.com/questions/2180465/can-domain-name-subdomains-have-an-underscore-in-it
https://stackoverflow.com/questions/2180465/can-domain-name-subdomains-have-an-underscore-in-it
https://groups.google.com/g/comp.protocols.dns.bind/c/kxJQspiOE8E
https://groups.google.com/g/comp.protocols.dns.bind/c/kxJQspiOE8E
https://www.rfc-editor.org/rfc/rfc2181#section-11
https://www.rfc-editor.org/rfc/rfc2616
https://www.rfc-editor.org/rfc/rfc2616
https://www.sciencedirect.com/science/article/pii/S0022000068800376
https://www.sciencedirect.com/science/article/pii/S0022000068800376

	Introduction
	Background
	Categories
	Programming Bugs: Overflow, Signed ints, off-by-one errors
	Ambiguous Delimiters (Truncation)
	Higher Order Parser Differentials
	Differences in conversion to a canonical form
	Semantic Parser Differentials: Ignoring Semantics
	Semantic Parser Differentials: Semantic Ambiguities (Duplicate Keys)
	Parser Differentials Involving Human Interaction
	Ambiguous Specifications

	Revisiting the Model
	Hunting Differentials in Practice
	The Basic Language Model
	Orders
	Differentials and Decidability
	Semantics
	Intermediate languages in programs

	Conclusion
	References

