C\‘IC U'l;glte-Cybgrg“&"nty Y’ = '
W f{\'ﬁcc
\\ﬁm“3~ufn

\ \ Y,
' l‘(Y | \\\‘\ (N
Taken Out of Context:

Language Theoretic Security
& Potential Appl/catlons for ICS

\\' ‘,““‘g‘ ORN A T\ u’-x.-; %1 ‘;‘i__, :
NN\ T AT TR A
\ A \ - e \’_
'v VA RNE *
L RN = -- _
Darren Highfill, UtiliSec darren@utlllsec com
Sergey Bratus, Dartmouth sergey@cs.dartmouth.edu

Meredith Patterson, Upstanding Hackers clonearmy@gmail.com

What’s the Problem? Milige

How do we distinguish between benign and malicious
input?
Trial and error = accumulation of malicious code profiles

What do we do about new exploits?

Trust the source

What happens when our source is compromised?

Bottom Line: Given a specific input, can we determine if
it is safe to process?

Copyright 2013 UtiliSec http://www.utilisec.com

Foundational Concepts Al

The Halting Problem

“Given a description of an arbitrary computer program,

decide whether the program finishes running or continues
to run forever.”

Alan Turing proved no algorithm can
exist which will always correctly
decide whether a given arbitrary
program and its input will halt

Any such algorithm can be made to

contradict itself, and therefore cannot
be correct.

Copyright 2013 UtiliSec

http://www.utilisec.com

Foundational Concepts AAtilige

Parsing vs. Processing o
Simple: it matches or it doesn’t \’ Bl | - [&
Harder: it can match multiple z
different things
Complex: matching depends on | s =

other information

Do we need to execute any “if” logic?
Separating the parsing from the processing turns out to
be an achievable* and valuable step

“Sufficiently complex input is indistinguishable from
executable byte code.”

Copyright 2013 UtiliSec

http://www.utilisec.com

Foundational Concepts A tilige

“Shotgun” Parsers
Many parsers do all kinds of input checking

Unfortunately, much of this input checking is scattered all over
the program

Have a dense-enough collection of checks, and you are likely
to hit most things (although the attacker only has to find one miss!)

Fuzzing

Tends to find the white space
between the individual pellet marks

In a way, is the (semi-random)
inverse of defining valid input

Copyright 2013 UtiliSec http://www.utilisec.com

Foundational Concepts AAtilige

Language Formalism

Noam Chomsky: containment recursively enumerable
hierarchy of formal grammars

context-sensitive

context-free

Context Dependency

Do you have to have additional information to determine
value or meaning?

Copyright 2013 UtiliSec http://www.utilisec.com

Foundational Concepts Al

Weird Machines

Hidden functionality unintentionally built
into a device
Discovered by security researchers

Distinct from reprogramming

Using the intended functionality in
unintended ways

Hypothesis: Machine A has a hidden
Machine B inside

Exploit is proof of existence of Machine B

Copyright 2013 UtiliSec http://www.utilisec.com

Applying Concepts to Technology 2 tiliSec

Parsers all the way down

\ transportControl. 8] apduSegment.128 l segCRC.16 | ... | apduSegment 8-128 l segCRC.16

request | applicationContol.8 | functionCode.8

response | applicationContol .8 | functionCode 8 | intemallnfo.16 objTvpe. 8 l variation.8 l indexSize 4 l qualifier 4 l applicationData]

[darta l or I index] OTN_&X darta]

count

count ||| data | or | index | OF

range ||| data [or | index | data

Copyright 2013 UtiliSec http://www.utilisec.com

Debunking a Myth Alig.

Hammer parser looks like an input grammar spec
vs. typical C code (difficult to tell what its supposed to parse)

Myth: in order to be fast, code must be unreadable

Example: Apache, Nginx, HTTP server/proxies

Debunked: Mongrel, Ruby HTTP parser

e Based on Ragel state machines (~ LangSec approach)

* Turned out to be much better than Apache at throwing out bad web
requests; was put before Apache as proxy — for performance boost

* You save when you throw out bad input early
* And, you are safer from adverse effects

http://www.utilisec.com

Copyright 2013 UtiliSec

DNP3 Link Layer Parser (simplified) - TliSec

05 64 14 F3 start = h token (“"\x05\x64");

01 00 00 04 _ ; : .
0n 3B CO C3 len = h int range(h uint8(), 5, 255);
01 3C 02 06 ctrl = h_uint8 () ;

3C 03 06 3C _ ; .
04 06 3C 01 dst = h uintlo();

06 92 12 src = h int range(h uintloe(), 0, ©65519);

crc = h uintlo();
hdr = h attr bool (h sequence (h ignore(start),
len, ctrl, dst, src, crc, NULL),
validate crc);
frame = h attr bool (h sequence (hdr,
h optional (transport frame),
h end p(), NULL),validate len);

Copyright 2013 UtiliSec http://www.utilisec.com

Introduction to Hammer Alige

From syntax to semantics: semantic actions
Wait to start processing until fully parsed & validated
Clean separation of semantics & syntax

Well-governed feature addition
Where to add new features/functionality?
Boundary between parsing & processing guides code evolution

Computational power is privilege; don’t expose it to
attacker early
Recognition: syntax vs semantics

Copyright 2013 UtiliSec http://www.utilisec.com

Example: DNP3 Parser Bug 2 UG

Sneak Preview (thank you to Adam Crain, Chris Sistrunk)

CRC CRC
05 64 06 44 64 00 64 00 FF F2 CO 1D OA

J \ 100 100 l

1 byte unconfirmed FIR/FIN
payload user data SEQ=0

transport frame =

h sequence (transport ctrl, h manyl(valid apdu), NULL);

Link layer header/transport control octet only
No APDU (but there should be at least one...)

Unhandled exception

Copyright 2013 UtiliSec http://www.utilisec.com

Context-Sensitivity Attacks! Atilige

Non-local length-value fields:

The graveyard of empires
OpenSSH 3.3 pre-auth, 2002
OpenBSD ICMPv6 remote root, 2007
DNP3, pretty much everywhere

How much memory do you allocate when you don’t
know how many CRCs to expect?

Octet strings

File control

Object group/object variation are essentially the
Interpreter pattern in your protocol

Copyright 2013 UtiliSec http://www.utilisec.com

Conclusion Ailig,

Potential Applications
Open-source library of input parsers

Vendors can re-use well-examined code (instead of having to re-write)

Refinement of fuzz-testing tools

Variations based on input-parsing definition

Impact
Moving toward whitelisting-style input validation
Proven track record of bug reduction

Copyright 2013 UtiliSec http://www.utilisec.com

