
it 1/15

Exploitation as Code Reuse:
On the Need of Formalization
Sergey Bratus, Anna Shubina

Abstract: This position paper discusses the need for modeling exploit computations and
discusses possible formal approaches to it.

ACM CCS: Security and privacy → Formal methods and theory of security.

Keywords: Exploitation, modeling, weird machines.

1 Introduction

Exploitation of a vulnerability in software or hardware
is making the system containing the vulnerability beha-
ve unexpectedly. Since trustworthiness of a machine or
device is a matter of its expected behaviors, exploitation
is the central phenomenon of computer security. Acade-
mic computer security advances by formal models of the
computing phenomena it studies. Surprisingly, though,
it still lacks a unified formal approach to describing ex-
ploitation.

One may argue that the concept of exploitation is so
intuitive that it does not need formal definitions. Alt-
hough we used to believe so in the past, we doubt it
now. For example, is being exploitable a property of a
particular bug or feature, or a whole-system property of
the containing system? Our current terminology confu-
ses these alternatives.

For a more substantive confusion, consider vastly diver-
gent treatment of exploitation across different techno-
logical domains. Academic literature on exploitation of
executable binaries overwhelmingly uses the device of
Turing completeness as a criterion of viable contributi-
on, whereas literature on exploitation of web applicati-
on platforms almost never uses this device, focusing in-
stead on the specific techniques used (SQLi, XSS, etc.)
or specific kinds of information that can be stolen. This
is despite the fact that exploitation in both domains is
driven by crafted inputs and produces complex unex-
pected computations with unexpectedly meager means.
This disparity is striking, and it persists across other
target domains.

When closely related phenomena are treated so dif-
ferently, their root causes are masked, and their analysis
is muddled. Research effort, after all, goes where success
is evident and likely to be recognized; our very view of

the security domain may be skewed due to the lack of
uniform criteria. For example, Turing completeness of
exploit programming models is a reasonable proxy for
the composability of their primitives—but is not equal
to it. We may be under-studying practically important
exploit models that are composable but not Turing com-
plete.

In this position paper, we attempt to unify the different
ideas regarding exploitation, and unpack the concepts
possibly considered obvious—and thus overlooked.

2 Prior work

The understanding of exploitation as a programming
discipline focusing on unexpected computation has a
long history in the hacker community. Bratus et al. [8]
give a sketch of how this discipline developed from lever-
aging specific cases of memory corruption to chaining up
multiple primitives into powerful and generic program-
ming models—up to Turing-completeness.

Exploits were understood both as proofs-by-
construction of the unexpected computation’s existence
(a.k.a. vulnerability) and as programs in their own
right. But if exploits are programs, and generalize into
programming models, what machines do they run on?

Tautologically, exploits violate the expectations of the
original programmer or designer of the vulnerable soft-
ware, and hence their models of the target machine. The-
se programmers or designers failed to see a richer ma-
chine embedded or emergent in the target. Exploits run
on these richer machines, and are proof-by-construction
that these richer machines exist.

The term “weird machines”, informally coined in [7] and
expanded by [9], attempted to capture this intuition, by

it – Information Technology 57 (2015) 1 c© de Gruyter Oldenbourg 1



introducing the idea that an exploit’s underlying execu-
tion model extended the programmer abstraction of the
machine with additional “weird” states and transitions,
arising, e.g., from memory corruptions or leaky abstrac-
tions. The underlying implementations or architectures
made these states representable and manipulable. The
manipulation (primarily, by means of crafted inputs)
was the subject of exploit programming, of “setting up,
instantiating, and programming the weird machine.” [9]

So formulated, the concept of a “weird machine” is in-
tuitive, and was indeed instantly recognizable to many
exploitation researchers. This intuition has been applied
to a variety of programming models such as computa-
tions driven by ELF metadata [21], x86 memory des-
criptors [4], Linux kernel’s signal-processing data struc-
tures [5], and Windows kernel’s memory deduplication
functionality [6], as well as others. Still, although pro-
ductive, it lacked a formal definition.

In [24], Vanegue produced the first formal definition
for the weird machine as a computational phenomenon
in the context of Proof-Carrying Code (PCC). Dullien
in [10] constructs an architectural model demonstrating
the emergence of unexpected computation on a formally
defined platform. Vanegue in [25] develops an axiomatic
model connected with program verification.

The purpose of this position paper is to explore the in-
tuitions regarding exploitations in breadth rather than
in depth. We leave the development of the formalisms to
the two papers mentioned above; here we discuss what
could be formalized.

3 Exploitation and code reuse: a program
verification perspective

Code reuse in exploitation could be seen as a trivial
convenience (less attack payload to write and debug) or
as a specialized trick to bypass certain protective mea-
sures that prevent execution of foreign code (e.g., non-
executable stacks and heaps, or load-time code-signing
checks). When seen that way, code reuse may seem a
marginal phenomenon that will be eventually mitigated
with further protective measures such as better ASLR,
code diversity, etc. Defenders might also be tempted
to apply these protections based on how desirable they
think the code is for the attackers to reuse (e.g., func-
tion epilogues or indirect jumps for ROP), rather than
throughout the code base.

This view would be grossly misleading. If we take the
perspective that exploitation is unexpected computa-
tion, then almost all code that runs under conditi-
ons it was not meant to encounter—such as consu-
ming data not conforming to the type intended for its
consumption—will likely perform unexpected computa-
tion. That is, any code that can have its assumptions
violated is potentially reusable by an exploit.

Intuitively, we might expect well-written programs to be
“stable” with respect to violations of their intermediary
conditions: we might expect small deviations from their
component preconditions to produce only small variati-
ons in behavior.

This expectation, however, is unfounded. The fact is
that correctness proofs of program verification—the
best weapon we have against unexpected execution—are
brittle with respect to any violations of their precondi-
tions.

3.1 Program verification

Proving the absence of unexpected computation is, of
course, the holy grail of security—so it makes sense to
look at exploitation from the verification point of view.
The foundations for proving correctness of computer
programs were laid by the classic 1969 C.A.R. Hoare
paper [14].

Hoare’s formalism in a nutshell. In Hoare’s con-
struction, code Q comes with pre-conditions P , and,
given that these pre-conditions hold true, after execu-
tion produces the post-conditions R (if Q terminates).
Such statements P {Q}R are written for all the ele-
mentary operations of a programming language, and
combined using intuitive Boolean logic axioms, such as:
if P {Q1}R1 and R1 {Q2}R hold, then P {Q1 ; Q2}R
hold. Then, if the entire program could be built up wi-
thin the braces using such compositions, statement by
statement, so that the condition P is empty—meaning
“anything”, “any circumstances”—then the program is
considered proven to produce the desired post-condition,
i.e., “proven correct”. This construction from the ele-
mentary operations upwards is itself the proof—and cor-
responds directly to the more recent insights that pro-
grams are proofs and propositions are types (cf. [26]).

Code reuse vs proofs. An important property of the-
se constructions is that they are brittle with respect to
violations of the pre-conditions at any point in the chain.
No matter if some Q is proven correct under its precon-
ditions P , we cannot assert anything about Q’s behavior
under a different P ′, however “small” (according to so-
me metric) the difference is.

Suppose we have a program fragment Q for which we
have proven P {Q}R. Let us pose the question: what
will Q compute, i.e., what set of post-conditions R it
can create, if we feed it inputs that don’t obey P?

This is exactly how an exploit (re)uses Q.

For instance, can we use Q to construct a Turing-
complete computation, similar to “weird machine” con-
structions that reuse other code such as function epilo-
gues, the ELF RTLD, or the x86 MMU? Can we use Q
as a primitive to combine with others in an exploit? In

2



short, what is the computational power of Q if we are
allowed to vary its inputs arbitrarily?

We can frame this question slightly differently. Given
P , Q, P {Q}R and some variation P ′ of P , what can
we infer about the conditions R′ such that P ′ {Q}R′?
Do “small” variations of P by some metric result in
“small” changes in R? Is there an efficient way to per-
form such “differential analysis” for certain classes of
code Q? What can we do to make Q less amenable to
yielding itself for exploit reuse?

Answering these questions may help characterize the
stability of program verification proofs, and shed new
light on what makes code reusable in exploits.

3.2 AEG as program verification

Automatic generation of exploits (AEG) is already being
viewed as a program verification task. For example, Av-
gerinos et al. describe their approach as a verification
task in which “the exploitability property replaces typi-
cal safety properties.” [3]

The current state of exploit generation systems, howe-
ver, limits them to vulnerabilities and exploits of a deca-
de ago. Vanegue in [23] formulates the key verification
problems that automated exploit generation needs to
solve efficiently to compete with the modern advanced
exploitation approaches.

4 Modeling exploitation

First and foremost, exploitation is a computational phe-
nomenon. Thus it should be possible to model it the
same way as we model computation, starting with the
basic models such as automata, abstract machines, or
rewriting systems.

Secondly, exploits are unexpected computations, “impos-
sible” within the programmer’s abstractions. For exam-
ple, unlabeled inner statements of functions are not ex-
pected to receive control; values of variables are not sup-
posed to be affected by writes to other unaliased varia-
bles, etc. Thus we need to model how abstractions break.
Asking for formal models of how abstractions get broken
may sound strange at first, but this is what we need to
model exploitation.

Although some exploitation techniques involve a physi-
cal component such as affecting the state of the target
with heat, magnetic fields, or radiation, a large majo-
rity of exploitation techniques use only crafted inputs.
This already suggests that exploitation is somehow rela-
ted to the classic models of computation theory such as
automata and tape-based abstract machines, in which
computation is driven by consumption of input.

An abstract automaton or machine changes its state in
response to symbols of an input language, somehow de-
livered. For a Turing machine, these input symbols are

located on the tape; for automata models, it is not spe-
cified where they exist before being fed in one by one,
but we can assume a tape that moves only forward past
a fixed reading-only head. Nothing other that consump-
tion of a symbol changes the state; incoming symbols is
what drives the computation.

The same is true for a typical network-bound program,
except that the mechanisms delivering input characters
to it are concrete (a PHY, a networking interface firmwa-
re, OS’ TCP/IP stack, etc.) Notably, attackers depend
on these mechanisms to operate exactly as specified,
i.e., they can abstract them just as the target’s devel-
oper did—unlike the targeted program’s internals, whe-
re breaking programmer abstractions is the attacker’s
primary tool.

To model exploitation, we thus need to model exactly
how crafted input payloads break abstractions.

4.1 Breaking abstractions

Classic automata definitions are quite constraining, in
accordance with their purpose, to isolate the mechani-
cal basics of computation. In a sense, there isn’t much
to vary about them: either the alphabet of symbols, or
the graph of states and transitions, or both. Another
possibility is to introduce external random mutations,
e.g., random changes of symbols on the tape or random
state transitions, but at least the deterministically suc-
ceeding exploits should be modeled without the use of
extra randomness.

A few ways of how abstractions break reliably in exploit
practice will therefore be useful to review. These ways
are not just very familiar to exploiters and reverse en-
gineers, but shape their daily practices. These examples
are deliberately drawn from different technological do-
mains and from the respectively different methods of
exploitation; moreover, they are key enablers of their
respective methods.

We will then discuss how these can be captured formally.

C abstraction vs machine binary execution. C
statements are supposed to be indivisible units of code:
control cannot transfer into the middle of a statement.
C functions are similarly supposed to be indivisible un-
less an explicit label exists or a special construct such as
setjmp/longjmp is used. Yet in reality any instruction
of the compiled code can be the target of a jump. For
example, just one or several instructions immediately
before a function’s epilogue can be used as an exploit
gadget.

x86 instructions vs byte storage. In x86, instructi-
ons are variable-length, instruction boundaries are not
marked, and instructions can start at any address re-
gardless of alignment. The CPU will start decoding an
instruction at whatever address the instruction pointer

3



holds. As a result, jumping inside a multi-byte instruc-
tion can yield a stream of valid instructions that were
never generated as such by a compiler, nor hand-coded.
Any suitable sequence of bytes can be used as a gadget,
whether originally emitted as an instruction or not.

For the same reason, x86 disassembly is always specu-
lative: unless the entry point into the code is known,
multiple disassembly variants of the same bytes should
be assumed.

ARM vs Thumb instruction encoding. In ARM
platforms, the above instruction decoding ambiguity
was made into an architectural feature: instructions are
fixed-length, but come in two sizes, 32-bit (standard
ARM) and 16-bit (Thumb). The least significant bit of
the address to fetch an instruction from selects the de-
coding mode. Thus the same bytes can be interpreted
as both ARM and Thumb instructions.

Constant data vs executable segments. When exe-
cuting binaries produced by many C/C++ compilers
(e.g., GCC) and loaded by the standard OS loader,
transferring control to addresses loaded with const da-
ta may result in successful decoding and execution of
these data bytes as instructions. The reason is that the
linker groups non-writable sections of the binary such
as .rodata with the executable .text into a single loa-
dable segment, presumably to compact them in non-
writable pages within the address space. This happens
despite the source code clearly indicating the opposite
intent.

Natural vs pivoted stacks. Compiled code of
C/C++ function preambles and epilogues is assumed
to deal with the program’s stack, or, rather, with one
of the stacks allocated for the program’s threads. Such
allocations are easy enough to track at either the OS or
Libc, as they are made by specialized code, and their
mapped memory areas are handled specially by the OS
to provide automatic stack expansion. However, actual
instructions cannot check these semantics, and therefo-
re “stack” to them is wherever the stack pointer points.
As a result, stacks are routinely pivoted by exploits from
their actual locations to wherever in memory the crafted
stack-imitating payload could be placed.

In-band metadata vs data. Many data structures
store their data interspersed with their own manage-
ment meta-data. For example, many heap implementa-
tions store their boundary tags in-band; program stacks
store their control flow data in-band, and so on. This can
cause confusion between data and meta-data, especially
when either is corrupted. The consequences of such con-
fusion are many and varied. Arguably, the most famous
are those used by classic heap exploitation techniques
that relied on the heap freelist management code acting

on a corrupted Doug Lea-type boundary tag to obtain
a write-four-bytes-almost-anywhere primitive [16].

Address information leaks vs OS and hardwa-
re abstractions. Software composition relies on ad-
dresses of functions and global data objects being ex-
ported by their respective software components. Sin-
ce many languages require the programmer to declare
the exported ones explicitly, it is natural for program-
mers to believe that all other addresses are not exposed
and will not be revealed by the OS. The introduction of
address randomization (ASLR) features reinforces this
idea. In reality, however, OS mechanisms such as me-
mory caching [27], memory deduplication [6], transla-
tion lookaside buffers [17], and many others prove to
be a means for a program running on the same CPU or
even the same machine to discover unexported addresses
within another process’ address space. Such informati-
on leaks came to prominence since ASLR and KASLR
became widespread and countermeasures, and “almost
every major memory-based exploit now relies on some
form of information leak.” [1]

Network packets vs PHY symbol streams. Ma-
ny PHY layers, e.g., 802.11 and 802.15.4, start with a
mechanism for transmitting and receiving sequences of
symbols via physical processes such a modulation and
demodulation of analog signals. A PHY implementation
receives a stream of such symbols rather than ready fra-
mes; that is, frames must be delimited in this stream,
and non-frame contents of it are discarded. When the
symbols forming the start-of-frame delimiter (SFD) are
confusable with the frame content symbols, crafted fra-
me contents can be taken for an SFD, resulting in receipt
of a crafted frame that was never sent as such (when the
actual SFD is altered by noise). [12]

Streams vs their reassembly. Streams are a power-
ful abstraction of packet-based protocols that allows
programmers to ignore specific ways that a stream’s
contents are segmented into packets for transmission.
However, streams need to be reassembled, and reassem-
bled versions may differ. For example, the classic [18]
showed that network intrusion detection systems ten-
ded to diverge from rigorous reassembly algorithms to
save time and CPU cycles, allowing attackers to mani-
pulate their view of TCP streams as compared with the
target’s view and thus to hide attacks. Moreover, dif-
ferent OSes reassembled crafted streams with repeated
TCP segments differently, some favoring the first recei-
ved variant of a segment and discarding the following
ones, whereas others favored the last received variant.
NIDS/NIPS evasion based on differences in packet reas-
sembly remains a basic attack technique. [20, 22]

4



Polyglot formats. The question of “what type is this
file”, or, more generally, payload, presumes that most
payloads have a unique type that can be unambiguous-
ly determined, and then an appropriate handler can be
called for it. Correctly determining the type can be im-
portant for security, especially when validation of an
input payload according to its type performed by one
component is relied upon by others. The type specifica-
tion can be explicit and external, such as a MIME type
specified in an HTTP response, or implicit and deter-
mined by a file or data signature, or even by a heuristic
such as checking that the data contains only alphanu-
meric characters.1

However, some formats such as PDF are flexible enough
to allow a single file to appear as both a valid PDF and
a valid ZIP, JPEG, PNG, etc. file, as well as a variety of
other formats. [2] While most of such polyglots are not a
security risk, the phenomenon of disagreeing interpreta-
tions of a payload can be and has been weaponized. [15]

It should be noted that the different decodings of byte
sequences into instructions are “polyglots” of the re-
spective instruction sequences with themselves. Poly-
glots between different instruction sets, i.e., sequences
that decode to correct and meaningful instructions un-
der several architectures are also possible (as shown,
e.g., in [11] for shellcode).

These are only a few examples of a how broken abstrac-
tions are used in everyday exploitation techniques. A
formal view of an exploit should unify these phenome-
na in a non-trivial way, without losing the specifics that
make them interesting to practitioners in each particular
case.

4.2 Colliding abstractions

The above examples are drawn from different domains,
but have one thing in common: not one but two (or
more) colliding abstractions are involved. While one is
broken, another is obeyed; the states and computation
illegal under one are legal under the other.

The implicit presence of a second, obeyed abstraction
is what makes exploitation a programming activity in
its essence. When we speak of exploit development as an
industrial activity, we imply that the process of creating
an exploit is teachable, learnable, and has a methodo-
logy to it that can be communicated to many skilled
workers; this would be impossible without suitable ab-
stractions.

The two abstractions can be related as layers of a single
stack. The “broken” abstraction then represents some
semantically reasonable expectations of a developer wor-
king within a certain layer of the software stack; it just

1 Cf. “Rosetta Flash” https://miki.it/blog/2014/7/8/
abusing-jsonp-with-rosetta-flash/ as a recent example
of how such heuristics can be used by an exploit; older ex-
amples include [19].

isn’t borne out by the lower-layer implementation. That
implementation, however, operates fully within its ab-
stractions, nowhere breaking them. For example, even
though compiled C code can be forced to jump to a
mid-statement instruction, creating an execution path
impossible from the C code view, this path is perfectly
legal for the x86 execution model, and involves no illegal
states of the processor or memory.

On the other hand, the abstractions may be competing,
as they are in case of polyglots and mismatching stream
reassembly: there, two same-level abstractions compete.
A special case of this are de-facto optimizations of stan-
dards (including attempts to “fix” non-standard con-
tent, for which, e.g., Adobe’s PDF processors are fa-
mous) lead to colliding abstractions, essentially creating
two diverging definitions of what the bytes mean. Diver-
gence may also arise from ambiguities in the standard
(such as with TCP reassembly of repeating segments).

4.3 Can we formalize abstraction-breaking?

The above examples suggest that we need to start with
two models: one expressing the violated abstraction,
another describing the abstraction that is obeyed, such
as a “leaky” implementation or a competing interpreta-
tion of the violated abstraction.

Both are driven by the same input, and the states of the
broken abstraction map onto sets of states of the obeyed
one—but, generally, not in reverse. We can think of the
actual abstraction-breaking computation as happening
simultaneously in both models up to a certain point, the
same consumed symbol causing legal transitions in both,
until it diverges, reaching in the contained (obeyed) ab-
straction a state that is no longer mappable back to the
programmer-intended (violated) one. From that point
on, the projection of the execution path onto the state
graph of the programmer-intended model is no longer
adequate for describing the state of the system.

However, when one abstraction serves as a substrate
in which another is implemented—e.g., as the assem-
bly execution model is to C’s—there may exist a se-
cond mapping between these abstractions, which helps
complete the definition. Namely, the mapping M from
the states of the programmer-intended model to sets of
states in the second one induces a partitioning on the
image of M . If this partitioning can be extended to the
set of all states beyond the image of M , then the exten-
ded partition’s sets outside the image of M can be said
to represent additional, “weird” states of the violated
abstraction, through which the computation path goes.

Consider, for example, a model of n < 256 states, im-
plemented as n values of a byte-sized variable in the
memory of a process. The values of all other bytes in
memory are irrelevant. Let’s say the memory consists of
N bytes, and thus has 28N states. Let the image of M
consist of n subsets of 28(N−1) states each, and let there
also be 256− n subsets of 28(N−1) states in the induced

5



O	  

V

M I	  

L	  

Figure 1: Programmer-intended (V) and actually obeyed (O)
states and transitions.

partitioning that are not in M ’s image. Should the va-
riable acquire a value outside of the n legitimate ones
(say, due to an off-by-one arithmetic error), the under-
lying partition set could be thought of a “weird” state
of the programmer-intended model, through which the
actual computation goes.

Formally, we can represent it as follows. Assume there
are two automata, V and O, with the state sets SV and
SO and transition sets TV and TO respectively. Let them
input the same language L.

The mapping M connects V and O as

∀sV ∈ SV M(sV ) ⊂ SO

∀sV , s′V ∈ SV M(sV ) ∩M(s′V ) = ∅
∀tV ∈ TV let tO = M(tV ) ∈ TO, tV (sV ) = s′V ,

tO(M(s′V )) = M(tV (sV ))

A rough depiction of these can be found in Figure 1.

Assume the partitioning P on SO that agrees with that
induced by M on the image M(SV ) ⊂ SO, i.e., P = {Pi}
such that Pi = M(si) for some si ∈ SV , Pi ∩ Pj = ∅ for
i 6= j. If this partitioning can be naturally extended to
SO \ M(SV ), for example, if the sets Pi are natural
translations of each other under some permutation of
SO (as in the above example), we’ll have a partition
P̄ = {P̄i} of SO, such that Pi = P̄i for all P̄i ⊂M(SV ),
and P̄i ∩ P̄j = ∅ for i 6= j.

Then we can formally extend SV and M with the
“preimages” of P̄k : P̄k ⊂ SO \M(SV ), writing M̄ and
S̄V , so that S̄V = SV ∪W where W = {sW : M̄(sW ) =
P̄k, P̄k ⊂ SO \ M(SV )}. Similarly, we extend TV with
transitions to and from W , T̄V = TV ∪ {s→ w : s ∈
SV , w ∈W} ∪ {w → s : s ∈ SV , w ∈W} ∪ {w → w′ :
w,w′ ∈W}, as induced by the execution paths in SO,
TO.

We can think of the preimage mapping I : {P̄i} →W or
the more general Ī : SO− > S̄V , which composes with
M̄ as ∀s ∈ SV ∪ W Ī(M(s)) = s. The mapping Ī is,

in these terms, the essence of V ’s implementation by O
(hence the choice of “I”).

With these extensions, we can describe the com-
putations taken in machines V and O on an
input l ∈ L as the sequences of states and
transitions (sO1, tO1, . . . , sOi, tOi, . . .) for O and
(s1, t1, . . . , si, ti, . . .) for V , where si ∈ SV , ti ∈ TV for
all i < i0 , si0 ∈W, ti0 ∈ T̄V , and si ∈ SV ∪W, ti ∈ T̄V

for i > i0. For these two sequences, M(si) = sOi,
M(ti) = tOi for all i.

Whether this construction appears natural or not, de-
pends on the internal structure of the underlying state
space SO and its partitioning P induced by M . Any na-
tural symmetries on the subsets of SO that map {Pi}
around and allow to extend it to a partition P̄ of the
entire SO provide this structure. Then, on any path in
the SO state space we can lift any state s ∈ SO \M(SV )
to the preimage wPk

such that M̄(wPk
) = Pk.

The extension of the transition set TV is tied with
those of SV and M . Specifically, for a transiti-
on sO → s′O, sO ∈M(SV ), s′O ∈ SO \M(SV ),M(sV ) =
sO, M̄(w) = s′O we put t̄ ∈ T̄V defined as t̄ : sV → w.

This construct describes an approach to extending the
top-level vulnerable abstraction with additional “weird”
states to describe the exploit combination that leaves
the abstraction’s original state space—and does not
need the full complexity of the underlying implementa-
tion abstraction to describe itself. This is important, be-
cause exploitation, as any programming activity, tends
to operate with the most economical descriptions of the
programming model.

We further see that the key role in this construct is
played by the structure of the obeyed abstraction’s state
space. Without such structure, extending the broken ab-
straction’s states to represent the computation’s path
would be contrived and thus not useful. This structure,
however, comes from the semantics of the underlying
abstraction—which our general notation does not cap-
ture, but specific models such as [10, 25] will.

5 Conclusion

Modern exploits are complex programs that rely on
breaking abstractions to reuse implicitly existing or
emergent features of the target architecture. These
emergent architectures on which the exploits run should
be studied in their own right if we hope to achieve pre-
venting unexpected computation as a phenomenon rat-
her than merely mitigating known exploit techniques in
an endless game of whack-a-mole. To do so, we need
to develop abstractions that describe exploitation from
the computational point of view—just as in computati-
on theory we developed simple models of computation to
answer the questions of what computers can and cannot
do. In security, we now face the same question for every
bit of code that may receive attacker-crafted input.

6



Acknowledgments

The authors gratefully acknowledge many helpful dis-
cussions with Felix ’FX’ Lindner, Julien Vanegue, and
Thomas Dullien about the phenomenon of exploitati-
on and its generalizations. The authors are also greatly
indebted to Meredith L. Patterson and Len Sassaman
who pioneered the language-theoretic and computation-
theoretic view of security and exploitation.

Literature

[1] Aaron Adams. Exploitation Advancements. Research
Insights, vol. 7, NCC Group, 2015.

[2] Ange Albertini. Abusing file formats; or, Corkami, the
novella. PoC‖GTFO, 7, March 2015.

[3] Thanassis Avgerinos, Sang Kil Cha, Alexandre Rebert,
Edward J. Schwartz, Maverick Woo, and David Brumley.
Automatic Exploit Generation. Communications of the
ACM, 57(2):74–84, 2014.

[4] Julian Bangert, Sergey Bratus, Rebecca Shapiro, and
Sean W. Smith. The Page-Fault Weird Machine: Les-
sons in Instruction-less Computation. In 7th USENIX
Workshop on Offensive Technologies. USENIX, 2013.

[5] Erik Bosman and Herbert Bos. Framing Signals - A
Return to Portable Shellcode. In 2014 IEEE Symposium
on Security and Privacy, pages 243–258, May 2014.

[6] Erik Bosman, Kaveh Razavi, Herbert Bos, , and Cristia-
no Giuffrida. Dedup Est Machina: Memory Deduplica-
tion as an Advanced Exploitation Vector. In 37th IEEE
Symposium on Security and Privacy (Oakland). IEEE,
2016.

[7] Sergey Bratus. What Hacker Research Taught Me. Re-
curity Labs Security Seminar, Berlin, December 2010.

[8] Sergey Bratus, Michael E. Locasto, Meredith L. Patter-
son, Len Sassaman, and Anna Shubina. Exploit Pro-
gramming: from Buffer Overflows to “Weird Machines”
and Theory of Computation. ;login:, December 2011.

[9] Thomas Dullien. Exploitation and State Machines:
Programming the “Weird Machine”, revisited. http:
//www.immunityinc.com/infiltrate/presentations/
Fundamentals_of_exploitation_revisited.pdf, April
2011. Infiltrate Conference.

[10] Thomas Dullien. Fundamentals of Exploitation. in pre-
paration, 2016.

[11] eugene. Architecture Spanning Shellcode.

[12] Travis Goodspeed, Sergey Bratus, Ricky Melgares, Re-
becca Shapiro, and Ryan Speers. Packets in Packets: Or-
son Welles’ In-Band Signaling Attacks for Modern Ra-
dios. In David Brumley and Michal Zalewski, editors,
5th USENIX Workshop on Offensive Technologies, pa-
ges 54–61. USENIX, August 2011.

[13] M. Heiderich, M. Niemietz, F. Schuster, T. Holz, and
J. Schwenk. Scriptless Attacks: Stealing More Pie Wi-
thout Touching the Sill. J. Comput. Secur., 22(4):567–
599, July 2014.

[14] C.A.R. Hoare. An Axiomatic Basis for Computer Pro-
gramming. Communications of the ACM, 12(10):576–
580, 1969.

[15] Jay Freeman (saurik). Exploit (& Fix) Android “Master
Key”; Android Bug Superior to Master Key; Yet Ano-
ther Android Master Key Bug. http://www.saurik.
com/id/17; http://www.saurik.com/id/18; http://
www.saurik.com/id/19, August 2013.

[16] jp. Advanced Doug Lea’s malloc Exploits. Phrack 61:6.
http://phrack.org/issues.html?issue=61&id=6.

[17] Sangho Lee, Taesoo Kim, and Yeongjin Jang. Breaking

KASLR with Intel TSX. In Black Hat USA, August
2016.

[18] Thomas H. Ptacek and Timothy N. Newsham. Insertion,
Evasion, and Denial of Service: Eluding Network Intru-
sion Detection. Technical report, Secure Networks, Inc.,
January 1998. http://insecure.org/stf/secnet_ids/
secnet_ids.html.

[19] rix. Writing ia32 alphanumeric shellcodes. Phrack
57:15, November 2001. http://phrack.org/issues/57/
15.html.

[20] Umesh Shankar and Vern Paxson. Active Mapping: Re-
sisting NIDS Evasion without Altering Traffic. In IEEE
Symposium on Security and Privacy, pages 44–61, 2003.

[21] Rebecca Shapiro, Sergey Bratus, and Sean W. Smith.
“Weird Machines” in ELF: A Spotlight on the Unde-
rappreciated Metadata. In 7th USENIX Workshop on
Offensive Technologies. USENIX, 2013.

[22] Sumit Siddharth. Evading NIDS, revisited.
http://www.symantec.com/connect/articles/
evading-nids-revisited, December 2005. (upda-
ted Nov 2010).

[23] Julien Vanegue. The Automated Exploitation Grand
Challenge. H2HC conference, Sao Paulo, Brazil, October
2013. http://openwall.info/wiki/_media/people/
jvanegue/files/aegc_vanegue.pdf.

[24] Julien Vanegue. The Weird Machines in Proof-Carrying
Code. In 1st IEEE Language-theoretic Security & Pri-
vacy Workshop, 2014.

[25] Julien Vanegue. Provably Unsafe Programs. in prepara-
tion, 2016.

[26] Philip Wadler. Propositions as Types. Communications
of the ACM, 58(12):75–84, 2015.

[27] Yuval Yarom and Katrina Falkner. FLUSH+RELOAD:
A High Resolution, Low Noise, L3 Cache Side-Channel
Attack. In 23rd USENIX Security Symposium (USE-
NIX Security 14), pages 719–732. USENIX Association,
August 2014.

Dr. Sergey Bratus Sergey Bratus is a
Research Associate Professor of Compu-
ter Science at Dartmouth College. Ser-
gey is a member of the LangSec.org pro-
ject that seeks to eliminate large clas-
ses of bugs related to input handling,
and worked with industrial control sy-
stems stakeholders to develop architec-
tural protections for ICS/SCADA sy-
stems and protocols. He has a Ph.D.
in Mathematics from Northeastern Uni-
versity.

Address: Dartmouth College, Institute
for Security, Technology, and Society,

Hanover, NH 03755, E-Mail: sergey@cs.dartmouth.edu

Dr. Anna Shubina Anna Shubina is
a post-doctoral research associate at
the Dartmouth Institute for Security,
Technology, and Society. Anna was the
operator of Dartmouth’s Tor exit no-
de when the Tor network had about
30 nodes total. She currently manages
the CRAWDAD.org repository of traces
and data for all kinds of wireless and
sensor network research.

Address: Dartmouth College, Institu-
te for Security, Technology, and Socie-
ty, Hanover, NH 03755, E-Mail: ashubi-
na@cs.dartmouth.edu

7


