
Editors: Patrick McDaniel, mcdaniel@cse.psu.edu | Sean W. Smith, sws@cs.dartmouth.edu

SYSTEMS SECURITY

1540-7993/14/$31.00 © 2014 IEEE Copublished by the IEEE Computer and Reliability Societies January/February 2014 83

Beyond Planted Bugs in “Trusting Trust”
�e Input-Processing Frontier
Sergey Bratus, Trey Darley, Michael Locasto, Meredith L. Patterson, Rebecca “bx” Shapiro, and Anna Shubina

I t’s been nearly 30 years since
Ken Thompson’s “Reflections

on Trusting Trust” lecture and its
famous verdict that “You can’t trust
code that you did not totally create
yourself.”1 If there is one practical
lesson that the Internet has taught
us since then, it’s that you can’t even
trust your own code if it receives
arbitrary inputs from the Internet.
Sooner or later, a mixture of bugs
or features turns connected code
into an execution engine for hostile
inputs—a weird machine.

Over time, exploitable bugs have
become more complex and exploits
more sophisticated; exploitation
techniques first showed aspects of
an art and then of a solid engineer-
ing process. However, all the bugs
needed to compromise the software
we use daily are likely already pres-
ent in it. In this age of virtual host-
ing and cloud services, taking inputs
from the Internet is just as dangerous
as it was for the original Internet dae-
mons. Despite defensive measures
such as making program stacks non-
executable and randomizing the tar-
get’s address space, exploitable bugs
migrate to other protocols or layers,
while still giving attackers access to
the defender’s “crown jewels.”

The 30 years that have passed
since Thompson’s speech is an eter-
nity in Internet time and effort.
When best efforts (in terms of both
dedication and expenditure) at
securing Internet-facing code are
frustrated for so long, a deeper and
yet not clearly understood princi-
ple must be at work. And, as is the
case with most deep principles, it is
likely hiding in plain sight.

Every Input Is a Program
Consuming input—any input—
causes the consuming code and the
underlying memory and processor
to change state, typically on sev-
eral levels of abstraction at once.
In short, input drives the target
through a computation. A program
is as a program does—so every input
is in fact a program for its target. It’s
a program in the same way that the
input being matched to a regular
expression is the program for the
automaton underlying that RegEx
implementation—the input drives
the automaton through its states and
transitions. It’s also a program in the
same sense that the content of a Tur-
ing machine’s tape is a program for
that machine as well as its input.

Information Is Instructions
We can conceive of information in
two ways. First, we can rely on our
common and traditional notion of
information as some kind of inert
data object, for example, a multi-
media file. Our current biases
assure us that surely this is the most
inert type of data; after all, it’s just
data about pixels or sound waves,
is it not?

Second, and much closer to
objective reality, is the notion that
all data is a stream of tokens of
almost arbitrary complexity, and
this stream of tokens is a sequence
of instructions to the parser of its
language. This sequence causes the
parser to transition from state to
state; read, write, copy, and allocate
memory; and generally speaking,
perform every kind of operation that
a classic computational model such

as a pushdown automaton or a Tur-
ing machine would. Therefore, we
should speak not of code operating
on input data but of input data oper-
ating on code—at least, on the part of
the program that processes inputs.

Some inputs are very simple pro-
grams and cause very simple state
changes. Regular expressions are
quite manageable: we write them
specifically to match inputs and
ensure no states other than those
of the regular expression automa-
ton can be entered while matching.
But the more complex the input and
the more ad hoc the parser code, the
less sure we can be of which states
the code is capable of.

In other words, when presented
with complex enough inputs and ad
hoc code to handle them, we don’t
and can’t fully know what kind of
an automaton is inside the code
and being programmed by inputs.
Indeed, exploits are living, “pwning”
proof that the induced computation
can stray very far from the intended
computation path—all the way to
root shell.

j1sys.indd 83 1/14/14 5:32 PM

interpreted the CSR to contain an
innocent domain name belong-
ing to the requester and signed it,
whereas the browser’s SSL client
interpreted the same data to be a
high-value domain name belonging
to another entity.5

Alternatively, the parsers might
reside on the same system as parts of
a binary tool chain, such as the pack-
age signature verifier and the package
installer in the case of the Android
Master Key type bugs.6 The bugs
featured a Java library cryptographic
signature verifier and a C++ installer,
both of which interpreted the com-
pressed archive—but disagreed
regarding its contents. As a result,
unsigned content could be installed.

This problem is potentially pres-
ent in chains of trust wherever both
the signature and the signed object
are contained in packages with non-
trivial packaging formats. Their
respective locations inside the pack-
age are computed from the pack-
age metadata; thus, the correctness
of signature verification depends
on the correctness and agreement
of metadata interpretation by all
components. (Besides the already
mentioned examples of X.509 and
Android Master Key bugs, see the
classic intrusion-detection system
evasion research.8,9)

The kinds of messages (pro-
grams) that can be algorithmi-
cally decided to cause equivalent
computation must be even sim-
pler than the programs for which
we can decide whether they halt.
Thus, the message formats that we
want to ensure are parsed the same
on different parsers must be sim-
ple enough as a language, and the
respective parsing code must match
that simplicity exactly.

There Can Be No Chain
of Trust in Babel
A trust chain is in fact a chain of
parsers that interpret binary content
to prevent unexpected computation
throughout the execution chain. It’s

entirely natural to break up cryp-
tographic verification into mod-
ules or even separate tools—after
all, this is what Unix’s philosophy
of small tools doing one thing well
encourages.

However, when these parsers
disagree, a Babel-like explosion
of diverging interpretations and
parser-specific dialects becomes a
danger to signing schemes, object
serialization, and even security
proof infrastructures. To para-
phrase a well-known line from �e
Matrix, “What good is a signature,
Mr. Anderson, if you can’t really see
the document?”

Metadata Malicious,
Mutable
Because automatic reasoning about
code is generally hard, we simply
sign code and later check signatures
to convince ourselves that it hasn’t
changed since signed by someone
we trust. However, this ignores the
engineering reality that the code
will be rewritten and combined
with other modules, which might
completely change the properties of
the overall program image.

As software engineering gets
more complex (Remember stati-
cally compiled executables? Try
finding any on your system!), so
do transformations of binary code
and data. For example, relocation of
binary code used to mean patching
absolute addresses in it to account
for loading the code at a different
address than linked for. Now, there
are more than a dozen types of relo-
cations, and the GNU/Linux code
that applies them resembles a vir-
tual machine’s implementation of
a bytecode. On Mac OS X, reloca-
tion entries are bytecode designed
to be executed by a virtual machine.
Perfectly well-formed relocation
entries are in fact Turing-complete
in a standard ELF-based GNU/
Linux environment,4 and the same
is likely true for Mach-O and Por-
table Executable formats.

Perhaps more surprising is the
x86 address translation mechanism
that composes physical memory
frames into the abstraction of a virtual
address space. Its logic—fed by page
tables, interrupt descriptors (IDTs),
memory segment descriptors
(GDTs), and 32-bit hardware task-
switching descriptors—turns out to
be Turing-complete!7

All these “tables” turn out to
be programs for their respective
interpreter logic (software or
hardware), capable of arbitrarily
transforming the signed code
supposedly “frozen” in a trusted
state. Unless all these kinds of “table”
metadata are watched and can be
effectively reasoned about, the
transformed code can’t be trusted.

As before, this means that
software engineering metadata
that goes into composing multiple
pieces of code into a single
runtime image must stick to the
simplest possible formats—or
be treated as code, with their
immutability assured with strong
cryptography and unambiguous
ways of locating them and their
signatures. This sounds a bit like
the chicken-and-egg problem, does
it not? Simplifying the data and
its respective parsers to verifiable
strengths suddenly sounds like a
better deal for trust chains.

I n the physical world, engineering
is based on the firm understanding

of unsolvable problems, rendered
such by fundamental laws, such as
conservation laws, that we know
can’t be bent by cleverness or hard
work and funding. The digital world
has been conspicuously lagging in
acknowledging the role of its own
unsolvable problems. Public percep-
tion still regards computerization as
magic that can significantly improve
any human endeavor when applied
with sufficient zeal. Yet, symbolic
manipulations are subject to natural
limitations as harsh as physical ones.

86 IEEE Security & Privacy January/February 2014

SYSTEMS SECURITY

j1sys.indd 86 1/14/14 5:32 PM

Ubiquitous insecurity of connected
systems and spectacular failures of
large-scale integration projects are
early cautionary examples of how
the digital utopia fails.

Will we ever be able to trust
connected computers? Can we
pull out maliciously crafted inputs’
poison teeth? At the very least, we
must rethink the dominant design
attitudes that got us here, such
as the idea that document view-
ers should “fix” erroneous input
rather than discard it out of hand
as well as the notion of extending
document formats until documents
require Turing- complete interpret-
ers to render. The same goes for
the designs that require scripts in
general-purpose programming lan-
guages to be executed before users
can even begin to judge a docu-
ment’s provenance.

The effective trust model of
designs that ignore inherent com-
puting limitations is the “leap
of faith,” ending in expensive
subscription- based heuristic Band-
Aids or in blaming users—that is to
say, victims. Worse yet, large-scale
deployment of fragile, untrust-
worthy software creates vulnerabil-
ity to direct physical damage. The
only winning move is not to play.

Acknowledgments
We thank Rik Farrow, whose help in get-
ting the LangSec message out has been
invaluable.

References
1. K. Thompson, “Reflections on

Trusting Trust,” Comm. ACM, vol. 8,
no. 27, 1984, pp. 761–763.

2. “A Tale of Two Pwnies (Part 1),”
Chromium blog, 22 May 2012;
h t t p : / / b l o g .c h r o m i u m .o r g /
2 0 1 2 / 0 5 / ta l e - o f - t wo - pw n i es
-part-1.html.

3. J. Oakley and S. Bratus, “Exploiting
the Hard-Working DWARF: Tro-
jan and Exploit Techniques with
No Native Executable Code,” Proc.

5th Usenix Conf. O�ensive Technolo-
gies, Usenix, 2011; https://www.
usenix.org/event/woot11/tech/
final_files/Oakley.pdf.

4. R. Shapiro, S. Bratus, and S.W.
Smith, “‘Weird Machines’ in
ELF: A Spotlight on the Under-
appreciated Metadata,” Proc. 7th
Usenix Conf. O�ensive Technolo-
gies, Usenix, 2013; https://www.
usenix.org/conference/woot13/
workshop-program/presentation/
Shapiro.

5. D. Kaminsky, L. Sassaman, and M.
Patterson, “PKI Layer Cake: New
Collision Attacks against the Global
X.509 CA Infrastructure,” 5 Aug.
2009; http://ioactive.com/pdfs/
PKILayerCake.pdf.

6. J. Freeman, “Android Bug Superior
to Master Key,” The Realm of the
Avatar blog, http://www.saurik.
com/id/18.

7. J. Bangert et al., “The Page-Fault
Weird Machine: Lessons in Instruc-
tion-Less Computation,” Proc.
7th Usenix Conf. O�ensive Tech-
nologies, Usenix, 2013;
https://www.usenix.org/
c o n f e r e n c e / w o o t 1 3 /
w o r k s h o p - p r o g r a m /
presentation/Bangert.

8. M. Handley, V. Paxson,
and C. Kriebich, “Net-
work Intrusion Detection:
Evasion, Traffic Normal-
ization, and End-to-End
Protocol Semantics,” Proc.
10th Conf. Usenix Secu-
rity Symp., vol. 10, 2001;
https://www.usenix.org/
conference/10th-usenix
- secur it y- sy mposium/
n e t w o r k - i n t r u s i o n
-detection-evasion-traffic
-normalization.

9. T. Ptacek and T. Newsham,
“Insertion, Evasion, and
Denial of Service: Elud-
ing Networking Intrustion
Detection,” 1998; http://
c i t e s e e r x . i s t . p s u .e d u .
viewdoc/summary?doi=
10.1.1.119.399.

Sergey Bratus is a research assistant
professor of computer science at
Dartmouth College. Contact him
at sergey@cs.dartmouth.edu.

Trey Darley is a senior security strate-
gist with Splunk’s Security Practice.
Contact him at trey@treyka.net.

Michael E. Locasto is an assistant
professor at the University of Cal-
gary. Contact him at locasto@
ucalgary.ca.

Meredith L. Patterson is the founder of
Upstanding Hackers. Contact her at
mlp@upstandinghackers.com.

Rebecca “bx” Shapiro is a PhD stu-
dent at Dartmouth University. Con-
tact her at bx@cs.dartmouth.edu.

Anna Shubina is a research associ-
ate at the Dartmouth Institute for
Security, Technology, and Soci-
ety. Contact her at ashubina@
cs.dartmouth.edu.

www.computer.org/security 87

j1sys.indd 87 1/14/14 5:32 PM

